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ABSTRACT
We describe a search optimization technique for implementa-

tion of relational programming language miniKanren which makes

more queries converge. Specifically, we address the problem of con-

junction non-commutativity. Our technique is based on a certain

divergence criterion that we use to trigger a dynamic reordering

of conjuncts. We present a formal semantics of a miniKanren-like

language and prove that our optimization does not compromise

already converging programs, thus, being a proper improvement.

We also present the prototype implementation of the improved

search and demonstrate its application for a number of realistic

specifications.
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1 INTRODUCTION
Relational programming is an approach, based on the idea of

describing programs not as functions, but as relations, without

distinguishing between the arguments and the result value. This

technique makes it possible to “query” programs in various ways,

for example, to execute them “backwards”, finding all sets of ar-

guments for a given result. Relational behavior can be reproduced

using a number of logic programming languages, such as Prolog,
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Mercury [17], or Curry [8]. There is also a family of embedded DSLs,

specifically designed for writing declarative relational programs

that originates from miniKanren [7]. miniKanren is a minimalistic

declarative language, initially developed for Scheme/Racket. The

smallest implementation of miniKanren is reported to comprise of

only 40 LOC [9, 11]; there are also more elaborate versions, includ-

ing miniKanren with constraints [1, 10], user-assisted search [18],

nominal unification [5], etc. Due to its simplicity, miniKanren was

implemented for more than 50 other languages, such as Haskell,

Go, Smalltalk, and OCaml. In a nutshell, miniKanren introduces

a minimalistic set of constructs to describe relations over a set of

syntactic terms, thus providing the same expressivity as a pure core

of conventional logic programming
1
.

miniKanren has proven to be a useful tool to provide elegant solu-

tions for various problems, otherwise considered as non-trivial [3].

One of the most promising areas of application for miniKanren

is the implementation of relational interpreters. Such interpreters

are capable not only to interpret programs in various directions,

but also to infer programs on the basis of expected input-output

specification [6].

Being quite simple and easy to use by design, in implementation

miniKanren introduces some subtleties. Under the hood, miniKan-

ren uses a complete interleaving search [13]. This search is guaran-

teed to find all existing solutions; however, it can diverge, when no

solution exists. In reality, this amounts to divergence in a number of

important cases — for example, when a program is asked to return

all existing solutions, or when the number of requested solutions

exceeds the number of existing ones. It is often possible to refactor

the specification of a concrete query to avoid the divergence, but

this has to be done for every execution “direction” of interest that

compromises the idea of fully declarative relational programming.

The specifications that do not diverge even when no solutions

exist, are called refutationally complete [3]. Writing refutationally

complete relational specifications nowadays requires knowledge of

miniKanren implementation intrinsics, and is not always possible

due to the undecidability of the fundamental computability prob-

lems. However, by developing a more advanced search it is possible

to make more specifications refutationally complete.

In this work we address one particular problem that often leads

to refutational incompleteness — the non-commutativity of con-

junction. We present an optimization technique that is based on a

certain non-termination test. Our optimization is online (performed

during the search), non-intrusive (does not introduce new constructs

and does not require any changes to be made to the existing speci-

fications), and conservative (applied only when the divergence is

1
A detailed miniKanren to Prolog comparison can be found at http://minikanren.org/

minikanren-and-prolog.html

https://doi.org/10.1145/3236950.3236958
https://doi.org/10.1145/3236950.3236958
http://minikanren.org/minikanren-and-prolog.html
http://minikanren.org/minikanren-and-prolog.html


PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Dmitri Rozplokhas and Dmitri Boulytchev

detected). We prove that for the queries that return a finite num-

ber of answers, our optimization preserves convergence. We also

demonstrate the application of the optimization for a number of

interesting and important problems.

We express our gratitude to William Byrd and the reviwers of

this paper for their constructive remarks and suggestions.

2 THE SYNTAX AND SEMANTICS OF A
RELATIONAL LANGUAGE

In this section we describe the syntax and semantics of the lan-

guage that is used in the rest of the paper. To some extent, this

description serves as a short introduction to miniKanren. The main

distinction between “the real”miniKanren and our version is that we

give a proper semantics only to converging programs that deliver a

finite set of answers, while in the reality of relational programming

the result is represented as an infinite stream, from which any num-

ber of answers can be requested, and the request of a non-existing

answer can lead to a divergence. Our semantics, thus, corresponds

to scenario, when all answers are requested from the stream. On

the other hand, we do not distinguish programs, calculating the

infinite number of answers, from those diverging with no results

at all. However, we consider the finite version of the semantics as

an important case that is justified by the evaluation, presented in

Section 5.

The syntax of our relational language is shown on Fig. 1. First, we

introduce the alphabet of constructors C, each of which is equipped

with a non-negative arity. Then we in a conventional fashion in-

ductively define the set of all terms T (𝑋 ), parameterized by the set

of variables 𝑋 . We need this parameterization since later we will be

dealing with two sorts of variables — syntactic and semantic, and,
therefore, two sorts of terms. Next, we choose the set of syntactic

variables V and the set of relational symbols R with arities that

will be used as names for relational definitions. We also introduce

a shortcut TV for the set of all terms over syntactic variables since

it will be used in all other syntactic definitions.

The core syntax category in the language is a goal. There are five
types of goals: unification of two terms, conjunction and disjunction

of two goals, fresh variable introduction and a call of some relational

definition.We stipulate that the calls of relational definitions respect

their arities; we will also use a shortcut form fresh (𝑥 𝑦 𝑧 ...) ...

instead of fresh (𝑥 ) (fresh (𝑦) (fresh (𝑧) ...) where needed.

Next, a relational definition D binds some relational symbol to a

parameterized goal; the number of parameters corresponds to the

arity of the symbol, and we assume that all parameter variables

are pairwise distinct. Finally, the top-level syntax category is a

specification S — a goal in the context of some relational definitions.

As an example of a relational program we consider a canonical

specification — list concatenation relation append𝑜 :

append𝑜 ↦→ 𝜆 𝑥 𝑦 𝑥𝑦 .

( (𝑥 ≡ Nil ) ∧ (𝑥𝑦 ≡𝑦 ) ) ∨
(fresh (ℎ 𝑡 𝑡𝑦 )

(𝑥 ≡ Cons (ℎ , 𝑡 ) ) ∧
(append𝑜 𝑡 𝑦 𝑡𝑦 ) ∧
(𝑥𝑦 ≡ Cons (ℎ , 𝑡𝑦 ) ) )

We respect here the convention to add the “
𝑜
” suffix to all names

of relational entities; for the simplicity, we omit the arities of con-

structors A, Cons, Nil and relational symbol append𝑜 .
Note, we define here a language with first-order relations; in

particular, we do not allow partial application. As we see later, our

approach critically depends on recursive call identification that is

a trivial task in the first-order case. Some existing frameworks for

relational programming [14, 15] do not impose such a limitation;

extending our approach for a higher-order case is a subject of future

research.

We describe the semantics of our language using a conventional

big-step style inference system. First, we choose an infinite set

of semantic variablesW. As we will see shortly, the fresh (𝑥 )...

construct allocates a fresh variable, not being used before, and

associates it with the syntactic variable 𝑥 . Thus, in the semantics

we will need an infinite supply of fresh variables.

Next, we introduce the interpretation of syntactic variables 𝜄 as a

(partial) mapping

𝜄 : V → T (W)

The role of the interpretation is twofold: first, it binds syntactic

variables, used in the fresh construct, to their semantic counter-

parts, and second, it binds relational parameters to their values —

terms over semantic variables. For a syntactic term 𝑡 and an inter-

pretation 𝜄 we denote 𝑡𝜄 the result of substitution of all syntactic

variables in 𝑡 by their interpretations according to 𝜄; we assume 𝑡𝜄

to be defined only when 𝜄 is defined for all variables in 𝑡 . Thus, 𝑡𝜄,

if defined, is always an element of T (W).
Then, we borrow some conventional machinery from unifica-

tion theory [2]. Namely, we define a substitution 𝜎 to be a partial

mapping between semantic variables and semantic terms:

𝜎 :W → T (W)

For any substitution 𝜎 we assume that the set of all free variables

of all terms in the range of 𝜎 has an empty intersection with the

domain of𝜎 , andwe denote by𝜎◦𝜃 the composition of substitutions,

defined in a usual way. For arbitrary 𝑡 ∈ T (W) and a substitution

𝜎 we denote the result of application of 𝜎 to 𝑡 as 𝑡𝜎 .

The basic inference relation for our semantics has the form

Γ, 𝜄 ⊢ (𝜎, 𝛿)
𝑔

=====⇒ 𝑆

where Γ is an environment that binds relational symbols to their

definitions, 𝜄 — an interpretation, 𝜎 — a substitution, 𝛿 — a set of al-

located semantic variables,𝑔— a goal, and 𝑆 — a set of pairs (𝜎′, 𝛿 ′),
where 𝜎′ and 𝛿 ′ — a substitution and a set of allocated semantic

variables respectively. Informally speaking, we interpret a goal 𝑔 in

the context of relational definitions Γ, current interpretation 𝜄, cur-

rent substitution 𝜎 and current set of allocated semantic variables

𝜎 . As a result, we obtain a (possibly empty) set of answers. Each

answer consists of a new substitution, accumulated through the

execution of 𝑔, and a new set of allocated semantic variables (note,

in the original miniKanren a goal can produce the same answer

multiple number of times, but this property is not important in our

case).
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C = {𝐶𝑘 , . . . } (constructors)
T(𝑋 ) = 𝑥 ∈ 𝑋 | 𝐶𝑘 (𝑡1, . . . , 𝑡𝑘 ), 𝑡𝑖 ∈ T (𝑋 ) (terms)
V = {𝑥, 𝑦, 𝑧, . . . } (syntactic variables)
TV = T(V) (syntactic terms)
R = {𝑟𝑘 , . . . } (relational symbols)
G = 𝑡1 ≡ 𝑡2, 𝑡𝑖 ∈ TV (unification)

𝑔1 ∧ 𝑔2 (conjunction)
𝑔1 ∨ 𝑔2 (disjunction)
fresh (𝑥 ) 𝑔 (fresh variable introduction)
𝑟𝑘 𝑡1 . . . 𝑡𝑘 , 𝑡𝑖 ∈ TV (relational reference)

D = 𝑟𝑘 ↦→ 𝜆𝑥1 . . . 𝑥𝑘 . 𝑔, 𝑥𝑖 ∈ V (relational definition)
S = 𝑑1, . . . , 𝑑𝑘 ;𝑔 (specification)

Figure 1: The syntax of the source language

Γ, 𝜄 ⊢ (𝜎, 𝛿 )
𝑡1 ≡ 𝑡2

===========⇒ ∅, 𝑚𝑔𝑢 (𝑡1𝜄𝜎, 𝑡2𝜄𝜎 ) = ⊥ [UnifyFail]

Γ, 𝜄 ⊢ (𝜎, 𝛿 )
𝑡1 ≡ 𝑡2

===========⇒ {(𝜎 ◦ Δ, 𝛿 ) }, 𝑚𝑔𝑢 (𝑡1𝜄𝜎, 𝑡2𝜄𝜎 ) = Δ ≠ ⊥ [UnifySuccess]

Γ, 𝜄 ⊢ (𝜎, 𝛿 )
𝑔1

======⇒ 𝑆1, Γ, 𝜄 ⊢ (𝜎, 𝛿 )
𝑔2

======⇒ 𝑆2

Γ, 𝜄 ⊢ (𝜎, 𝛿 )
𝑔1 ∨ 𝑔2

============⇒ 𝑆1 ∪ 𝑆2
[Disj]

Γ, 𝜄 ⊢ (𝜎, 𝛿 )
𝑔1

======⇒ ⋃
𝑖 { (𝜎𝑖 , 𝛿𝑖 ) }, ∀𝑖 : Γ, 𝜄 ⊢ (𝜎𝑖 , 𝛿𝑖 )

𝑔2
======⇒ 𝑆𝑖

Γ, 𝜄 ⊢ (𝜎, 𝛿 )
𝑔1 ∧ 𝑔2

============⇒ ⋃
𝑖 𝑆𝑖

[Conj]

Γ, 𝜄 [𝑥 ← 𝛼 ] ⊢ (𝜎, 𝛿 ∪ {𝛼 })
𝑔

=====⇒ 𝑆

Γ, 𝜄 ⊢ (𝜎, 𝛿 )
fresh (𝑥 ) 𝑔

================⇒ 𝑆

, 𝛼 ∈ W \ 𝛿 [Fresh]

Γ, [𝑥𝑖 ← 𝑣𝑖 ] ⊢ (𝜖, 𝛿 )
𝑔

=====⇒ ⋃
𝑗 { (𝜎 𝑗 , 𝛿 𝑗 ) }

Γ, 𝜄 ⊢ (𝜎, 𝛿 )
𝑟𝑘 𝑡1 . . . 𝑡𝑘

================⇒ ⋃
𝑗 { (𝜎 ◦ 𝜎 𝑗 , 𝛿 𝑗 ) }

, Γ (𝑟𝑘 ) = 𝜆𝑥1 . . . 𝑥𝑘 .𝑔, 𝑣𝑖 = 𝑡𝑖 𝜄𝜎 [Invoke]

Figure 2: Big-step operational semantics

The inference rules themselves are shown on Fig. 2. The first

two rules handle two possible outcomes of the unification. Note,

we use here the most general unifier (𝑚𝑔𝑢) of two semantic terms;

we assume “occurs check” to be incorporated in the unification

algorithm. Since the unification goal is built of syntactic terms, we

have to interpret them first (by applying 𝜄), and take into account

current substitution 𝜎 .

The rule for the disjunction first interprets the constituents of

the disjunction in the same state and then combines the outcomes.

The rule for the conjunction threads the execution of its sub-

goals in a left-to-right successive manner: first the left conjunct is

evaluated, providing a set {(𝜎𝑖 , 𝛿𝑖 )}. Then the second conjunct is

evaluated for each element of the set, and the results are eventu-

ally combined. Note, the evaluation of both conjuncts is performed

under the same interpretation 𝜄 since both of them occur in the

same bounding context. The substitution and the set of allocated

semantic variables, on the other hand, are inherited from left to

right since the evaluation of the right conjunct has to be performed

in the context of the results, provided by the left one.

The rule for the fresh construct allocates arbitrary semantic

variable, not taken before, and evaluates the single subgoal in the

updated interpretation that associates the syntactic variable, bound

in this fresh, with the chosen semantic one.

Finally, the rule for relational definition invocation describes

its evaluation in a few steps. First, the body of the definition is

found, using the environment Γ. Then, the terms 𝑡𝑖 , specified as

the arguments of the invocation, are converted into their semantic

forms 𝑣𝑖 using current interpretation 𝜄 and current substitution 𝜎 .

Next, the body of the definition is evaluated in the context of empty
substitution 𝜖 and an interpretation, containing nothing else, than

the bindings for the formal parameters of the definition. This way

of handling interpretation models the behavior of a call stack in

conventional languages with no nested functions. Finally, the result

substitutions are composed with the original one
2
.

2
We could use the original substitution instead of the empty one without the need to

use composition; however we found the approach we took more proof-friendly since

each relational definition is evaluated in initially empty substitution.
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Given this big-step evaluation relation for goals, we can describe

the evaluation for the top-level specification 𝑠 = 𝑑1, . . . , 𝑑𝑘 ;𝑔. First,

we construct the associated environment Γ𝑠 that properly binds

all relational symbols in 𝑠 to their bodies. Then, we evaluate the

top-level goal

Γ𝑠 , ⊥ ⊢ (𝜖, ∅)
𝑔

=====⇒ 𝑆𝑠

obtaining the set of results 𝑆𝑠 ; here we use the empty (everywhere

undefined) interpretation ⊥ and the empty substitution 𝜖 as a start-

ing point. Finally, we choose all substitutions from 𝑆𝑠 .

Our semantics is almost deterministic — the only source of am-

biguity is the rule for the fresh construct, where we choose a

new semantic variable arbitrarily. If we fix the order, in which se-

mantic variables are allocated, the semantics becomes completely

deterministic. It is also easy to see that if each relational symbol is

unambiguously defined in the specification and called with a proper

number of parameters, and all goals in all relational definitions and

the top-level goal are closed (i.e. each variable occurrence is bound

either in some fresh construct or in a parameter list of enclosing

definition), then during the evaluation all syntactic variables are

properly interpreted — in other words, the execution cannot break

down halfway through and either diverges or finishes with some

results.

We illustrate the evaluation, determined by this semantics, by

the following query:

fresh (𝑞 ) (append𝑜 (Cons (A , Nil ) ) Nil 𝑞 )

where append𝑜 is a list concatenation relation, presented earlier in

this section. Since we require the top-level goal to be closed, from

now on we conventionalize the use of the top-level fresh construct
as a binder for the variables, whose values we are interested in (in

this particular example 𝑞).

The evaluation is illustrated on Fig. 3. Note, the derivation is

shown in a top-down manner, opposite to the direction, prescribed

by the inference rules. We use numbers in bold font to denote

semantic variables. For the sake of brevity and in order to make the

illustration observable we do not show the binding environment for

relational definitions and as a rule denote by ellipses all inherited

components of derivation tree (the components in the left side of

“⇒” are inherited top-down, in the right side — bottom-up).

We start from the top-level goal and first apply the rule Fresh

(see Fig. 3a). Since we did not use any semantic variables yet, we

allocate the first one (0), update the interpretation and the set of

used semantic variables and continue. The next construct is the call

for append𝑜 , so we unfold its definition, replace the interpretation

of syntactic variables by the bindings for the formal parameters,

and evaluate the body w.r.t. the empty substitution (which has no

difference from the current one yet). The body of append𝑜 defi-

nition is a disjunction, so we take its left constituent, which is a

conjunction, so we, in turn, take its left constituent, which is a

unification 𝑥 ≡ Nil. This unification clearly fails, as current inter-

pretation binds 𝑥 to Cons (A , Nil ) . This completes the whole

branch for the first disjunct of append𝑜 with empty result.

The evaluation of the second disjunct is shown on Fig. 3b. Its top-

level construct is fresh (ℎ 𝑡 𝑡𝑦), so we allocate three successive

semantic variables 1, 2 and 3 and save the bindings in the interpre-

tation. The next construct is a conjunction of three goals (assuming

“∧” is right-associative in the concrete syntax), and we proceed with
the first one, which is a unification 𝑥 ≡ Cons(ℎ, 𝑡 ). Since 𝑥 , ℎ and 𝑡

are free in the current substitution and 𝑥 is bound to Cons (A , Nil )
by current interpretation, the unification succeeds with the substi-

tution [1 ↦→A, 2 ↦→Nil]. The evaluation of remaining conjuncts is

shown on Fig. 3c.

The first one is a recursive call to append𝑜 . We evaluate the ac-

tual parameters — 𝑡 , 𝑦 and 𝑡𝑦 — in the current interpretation and

substitution, obtaining Nil, Nil and 3 respectively, replace the in-

terpretation to bind formal parameters to these values, and recurse

to the body with empty current substitution. Again, we have the dis-

junction, and the first disjunct is a conjunction (𝑥 ≡ Nil)∧(𝑥𝑦 ≡ 𝑦).
Now 𝑥 ≡ Nil succeeds, as 𝑥 is already bound to Nil by the interpre-
tation, and 𝑥𝑦 ≡ 𝑦 succeeds as well, providing a new substitution

[3 ↦→Nil]. We omit the detailed evaluation of the second top-level

disjunct of append𝑜 since it contains a unification 𝑥 ≡ Cons (_ , _ )
which, clearly, does not contribute anything.

Finally, we return from the recursive call to append𝑜 and take the
composition of substitutions — the one before the call, and another

after — which gives us [1 ↦→A, 2 ↦→Nil, 3 ↦→Nil] (see Fig. 3d). We

only need now to interpret the last conjunct of the second disjunct of

append𝑜 — 𝑥𝑦 ≡ Cons (ℎ, 𝑡𝑦) —which gives us the final substitution

[1 ↦→A, 2 ↦→Nil, 3 ↦→Nil, 0 ↦→Cons (A , Nil ) ]. Now, we have to

remember that the topmost bound variable of the top-level goal is

𝑞, and corresponding semantic variable is 0. Thus, the answer is
𝑞 = Cons (A , Nil ) , which is rather expected.

3 REFUTATIONAL INCOMPLETENESS AND
CONJUNCTION NON-COMMUTATIVITY

The language, defined in the previous section, is expected to al-

low defining computable relations in a very concise and declarative

form. In particular, it is expected from a relational specification to

preserve its behavior regardless the order of conjunction/disjunc-

tion constituents. Regretfully, in general this is not true, and one of

the most important manifestations of this deficiency is refutational
incompleteness.

In the context of relational programming, refutational complete-

ness [3] is understood as a capability of a program to discover the

absence of solutions and stop. At the first glance, the divergence in

the case of solution absence does not seem to be a severe problem.

However, as we see shortly, refutational incompleteness leads to

many observable negative effects in numerous practically important

cases.

We demonstrate the effect of refutational incompleteness with

a very simple example. Let us take the definition of append𝑜 from

the previous section and try to evaluate the following query:

fresh (𝑝 𝑞 ) (append𝑜 𝑝 𝑞 Nil )

We would expect this query to converge to the single answer

𝑝 = Nil, 𝑞 = Nil; however, in the reality the query diverges. We

sketch here the explanation, omitting some non-essential technical

details, such as semantic variables allocation, etc.:
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⊥ ⊢ (𝜖, ∅)
fresh (𝑞) ...

==================⇒ ...

[𝑞 ↦→0] ⊢ (𝜖, {0})
append𝑜 (Cons (A , Nil )) Nil 𝑞

=========================================⇒ ...

[𝑥 ↦→Cons (A , Nil ) , 𝑦 ↦→Nil, 𝑥𝑦 ↦→0] ⊢ (. . . )
(...) ∨ (...)

==================⇒ ...

. . . ⊢ (. . . )
(𝑥 ≡ Nil)∧ (...)

=====================⇒ ∅
Fig. 3b

. . . ⊢ (. . . ) 𝑥 ≡ Nil
============⇒ ∅

(a)

[𝑥 ↦→Cons (A , Nil ) , 𝑦 ↦→Nil, 𝑥𝑦 ↦→0] ⊢ (𝜖, {0})
fresh (ℎ 𝑡 𝑡𝑦) ...

=====================⇒ ...

[. . . , ℎ ↦→1, 𝑡 ↦→2, 𝑡𝑦 ↦→3] ⊢ (𝜖, {0..3})
(𝑥 ≡ Cons (ℎ, 𝑡 ))∧ (...)

============================⇒ ...

. . . ⊢ (𝜖, {0..3})
𝑥 ≡ Cons (ℎ, 𝑡 )

====================⇒ {([1 ↦→A, 2 ↦→Nil], {0..3})} Fig. 3c

(b)

. . . ⊢ {([1 ↦→A, 2 ↦→Nil], {0..3})}
(append𝑜 𝑡 𝑦 𝑡𝑦)∧(...)

===========================⇒ ...

. . . ⊢ (. . . )
append𝑜 𝑡 𝑦 𝑡𝑦

====================⇒ ...

Fig. 3d

[𝑥 ↦→Nil, 𝑦 ↦→Nil, 𝑥𝑦 ↦→3] ⊢ (𝜖, {0..3})
(...) ∨ (...)

==================⇒ ...

. . . ⊢ (. . . )
(𝑥 ≡ Nil)∧(𝑥𝑦 ≡ 𝑦)

=========================⇒ ...

. . . ⊢ (. . . ) 𝑥 ≡ Nil
============⇒ (. . . ) . . . ⊢ (. . . )

𝑥𝑦 ≡ 𝑦
===========⇒ {([3 ↦→Nil], {0..3})}

(c)

. . . ⊢ ([1 ↦→A, 2 ↦→Nil, 3 ↦→Nil], {0..3})
𝑥𝑦 ≡ Cons (ℎ, 𝑡𝑦)

======================⇒ {([. . . , 0 ↦→Cons (A , Nil ) ], {0..3})}

(d)

Figure 3: An example of relational evaluation

• First we evaluate the first disjunct of append𝑜 ’s body and

unify 𝑝 with Nil (successfully) and Nil with 𝑞 (successfully),

which gives us the first (expected) answer.

• Then we proceed to the second disjunct, which is a conjunc-

tion of three simpler goals:

– in the first one we unify 𝑝 with Cons (ℎ, 𝑡 ) (successfully);

– in the second we encounter a recursive call

append𝑜 𝑡 𝑞 Nil; since its arguments are merely

the renamings of the enclosing one, we repeat from the

top and never stop.

The problem is that the semantics of conjunction, in fact, is not

commutative: when the first conjunct diverges and the second fails,

the whole conjunction diverges. We stress that this is not a devia-

tion of our semantics, but a well-known phenomenon, manifesting

itself in all known miniKanren implementations. In our example,

switching two last conjuncts in the definition of append𝑜 solves

the problem — now the whole search stops after the unsuccessful

attempt to unify Nil and Cons (ℎ, 𝑡𝑦) with no recursive call. This,

improved version of append𝑜 , is known to be refutationally com-

plete. In fact, there is a conventional “rule of thumb” for miniKanren

programming to place the recursive call as far right as possible in a

list of conjuncts.

This convention, however, does not always help; to tell the truth,

it often makes the things worse. Consider as an example yet another

relation on lists:

revers𝑜 ↦→ 𝜆 𝑥 𝑥𝑟 .

( (𝑥 ≡ Nil ) ∧ (𝑥𝑟 ≡ Nil ) ) ∨
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(fresh (ℎ 𝑡 𝑡𝑟 )

(𝑥 ≡ Cons (ℎ , 𝑡 ) ) ∧
(append𝑜 𝑡𝑟 (Cons (ℎ , Nil ) ) 𝑥𝑟 ) ∧
(revers𝑜 𝑡 𝑡𝑟 )

)

This relation corresponds to a relational list reversing; as we

see, the recursive call is placed to the end. However, the following

query

fresh (𝑞 ) (revers𝑜 (Cons (A , Nil ) ) 𝑞 )

diverges, while

fresh (𝑞 ) (revers𝑜 𝑞 (Cons (A , Nil ) ) )

converges to the expected results. If we switch the two last con-

juncts in the definition of revers𝑜 , the situation reverses: the first

query converges, while the second diverges. This example demon-

strates that the desired position of a recursive call (and, in general,

the order of conjuncts) depends on the direction, in which the

relation of interest is evaluated.

There are, however, some cases, when the same relation is eval-

uated in both directions, regardless the query. We can take as an

example relational permutations, which can be implemented by

running relational list sorting in both directions:

sort𝑜 ↦→ 𝜆 𝑥 𝑥𝑠 . . . .

perm𝑜 ↦→ 𝜆 𝑥 𝑥𝑝 .

fresh (𝑥𝑠 )

(sort𝑜 𝑥 𝑥𝑠 ) ∧ (sort𝑜 𝑥𝑝 𝑥𝑠 )

The idea of this implementation is very simple. Let us want to

calculate all permutations of some list 𝑙 . We first sort 𝑙 , obtaining

the sorted version 𝑙 ′; then we ask for all lists which, being sorted,

become equal to 𝑙 ′. Obviously, all such lists are merely permutations

of the original list 𝑙 . The important observation is that the existence

of a single list sorting relation is sufficient to implement this idea.

The concrete definition of the relational list sorting sort𝑜 is

not important, so we omit it due to the space considerations (an

interested reader can refer to [14]). The important part is that it is

obviously recursive and not refutationally complete, and it is being

evaluated in both directions within the body of perm𝑜 . So, perm𝑜 is

expected to perform poorly regardless the order of recursive calls

in sort𝑜 implementation; it, indeed, does. First, if we request all

solutions, both fresh (𝑞) (perm𝑜 l 𝑞) and fresh (𝑞) (perm𝑜 𝑞 l)
diverge for arbitrary non-empty list l regardless the implementa-

tion of sort𝑜 ; second, even if we request only a first few existing

solutions, it does not provide any results in a reasonable time even

for very small list lengths (4, 5, etc.).

Interesting, that if we interested in all solutions, we have to

accurately precompute their number in order not to request more,

than exists. For some problems, it may be not so simple, as it looks

at a first glance (for example, the number of all permutations is not

a factorial, but a number of permutations with repetitions). Finally,

getting the number of solutions can itself be an objective for writing

a relational specification (we provide some examples in Section 5),

and without refutational completeness requesting all solutions to

calculate their number is out of reach.

4 SEARCH IMPROVEMENT
As we’ve seen in the previous section, the non-commutativity

of conjunction in the presence of recursion is one of the reasons

for refutational incompleteness. Switching arguments of a certain

conjunction can sometimes improve the results; there is, however,

no certain static order, beneficial in all cases. Thus, we can make

the following observations:

• the conjunction to change has to be properly identified;

• the order of conjunct evaluation has to be a subject of a

dynamic choice.

Our improvement of the search is based on the idea of switching

the order of conjuncts only when the divergence of the first one is

detected. More specifically:

• during the search, we keep track of all conjunctions being

performed;

• when we detect the divergence, we roll back to the near-

est conjunction, for which we did not try all orders of con-

stituents yet, switch its constituents, and rerun the search

from that conjunction.

The important detail is the divergence test. Of course, due to the

fundamental results in computability theory, there is no hope to

find a precise computable test that constitutes the necessary and

sufficient condition of divergence. However, in our case a sufficient

condition is sufficient. Indeed, a sufficient condition identifies a case,

when the search, being continued, will lead to an incompleteness

(since a divergence in our semantics always means incompleteness).

Thus, it is no harm to try some other way.

Another important question is the discipline of conjuncts reorder-

ing. Indeed, simply switching any two operands of, for example,

(𝑔1 ∧ 𝑔2) ∧ 𝑔3, would not allow us to try (𝑔1 ∧ 𝑔3) ∧ 𝑔2. Thus, we
have to flatten each “cluster” of nested conjunctions into a list of

conjuncts

∧
𝑔𝑖 , where none of the goals 𝑔𝑖 is a conjunction. Then,

it may seem at the first glance that the number of orderings to try

is exponential on the number of conjuncts; we are going to show

that, fortunately, this is not the case, and a quadratic number of

orders is sufficient.

In the rest of the section we address all these issues in details:

first, we formally present the divergence criterion and prove the

necessity property; then, we describe an efficient reordering disci-

pline. Finally, we present a modified version of the semantics with

incorporated divergence test and reordering. This semantics can be

considered as a modified version of the search, and we prove that

this modification is a proper improvement in terms of convergence.

4.1 The Divergence Test
Our divergence test is based on the following notion:

Definition 1. We say that a vector of terms 𝑎
𝑖
is more general,

than a vector of terms 𝑏
𝑖
(notation 𝑎

𝑖
⪰ 𝑏

𝑖
), if there is a substitu-

tion 𝜏 , such that ∀𝑖 𝑏𝑖 = 𝑎𝑖𝜏 .

The idea of the divergence test is rather simple: it identifies a

recursive call with more general arguments than (some) enclosing

one. To state it formally and prove it using the semantics from

section 2, we need several definitions and lemmas.
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Definition 2. A semantic variable 𝑣 is observable w.r.t. the inter-
pretation 𝜄 and substitution 𝜎 , if there exists a syntactic variable 𝑥 ,

such that 𝑣 ∈ 𝐹𝑉 (𝜄 (𝑥)𝜎).

Definition 3. A triplet of interpretation, substitution and a

set of allocated semantic variables (𝜄, 𝜎, 𝛿) is called coherent, if
𝑑𝑜𝑚(𝜎) ⊆ 𝛿 , and any semantic variable, observable w.r.t. 𝜄 and 𝜎 ,

belongs to 𝛿 .

Definition 4. A semantic statement

Γ, 𝜄 ⊢ (𝜎, 𝛿)
𝑔

=====⇒ 𝑆

is well-formed, if (𝜄, 𝜎, 𝛿) is a coherent triplet.

Note, the root semantic statement Γ,⊥ ⊢ (𝜖, ∅)
𝑔

=====⇒ 𝑆 is al-

ways well-formed.

Lemma 1. For a well-formed semantic statement, every state-

ment in its derivation tree is also well-formed.

The proof is by induction on the derivation tree. Note, we need

to generalize the statement of the lemma, adding the condition that

(𝜄, 𝜎𝑟 , 𝛿𝑟 ) is a coherent triplet for any (𝜎𝑟 , 𝛿𝑟 ) ∈ 𝑆 .
The next lemma ensures that any substitution in the RHS of a

semantic statement is a correct refinement of that in the LHS:

Lemma 2. For a well-formed semantic statement

Γ, 𝜄 ⊢ (𝜎, 𝛿)
𝑔

=====⇒ 𝑆

and any result (𝜎𝑟 , 𝛿𝑟 ) ∈ 𝑆 , there exists a substitution Δ, such that:

(1) 𝜎𝑟 = 𝜎 ◦ Δ;
(2) any semantic variable 𝑣 ∈ 𝑑𝑜𝑚(Δ) ∪ 𝑟𝑎𝑛(Δ) either is ob-

servable w.r.t. 𝜄 and 𝜎 , or does not belong to 𝛿 (where

𝑟𝑎𝑛(Δ) = ⋃
𝑣∈𝑑𝑜𝑚 (Δ) 𝐹𝑉 (Δ(𝑣))).

The proof is by induction on the derivation tree; we as well need

to generalize the statement of the lemma, adding the condition that

the set of all allocated semantic variables 𝛿 can only grow during

the evaluation.

The final lemma formalizes the intuitive considerations that

the evaluation for a certain state (𝜎′, 𝛿 ′) cannot diverge, if the
evaluation for a more general state (𝜎, 𝛿) doesn’t diverge:

Lemma 3. Let

Γ, 𝜄 ⊢ (𝜎, 𝛿)
𝑔

=====⇒ 𝑆

be a well-formed semantic statement, (𝜄′, 𝜎′, 𝛿 ′) be a coherent

triplet, and let 𝜏 be a substitution, such that 𝜄′ (𝑥)𝜎′ = 𝜄 (𝑥)𝜎𝜏 for

any syntactic variable 𝑥 . Then

Γ, 𝜄′ ⊢ (𝜎′, 𝛿 ′)
𝑔

=====⇒ 𝑆 ′

is well-formed and its derivation height is not greater than that for

the first statement.

The proof is by induction on the derivation tree for the first state-

ment. We need to generalize the statement of the lemma, adding

the requirement that for any substitution 𝑠′𝑟 in the RHS of the

second statement, there has to be a substitution 𝑠𝑟 in the RHS of

the first statement, such that there exists a substitution 𝜏𝑟 , such

that 𝜄′ (𝑥)𝜎′𝑟 = 𝜄 (𝑥)𝜎𝑟𝜏𝑟 for any syntactic variable 𝑥 . In the cases

of Fresh and Invoke rules, some semantic variables can become

non-observable, and we need to define a substitution 𝜏𝑟 separately

for these “forgotten” variables and those, which remain observable,

using Lemma 2.

Now we are ready to claim and prove the divergence criterion.

Theorem 1 (Divergence criterion). For any well-formed se-

mantic statement

Γ, 𝜄 ⊢ (𝜎, 𝛿)
𝑟𝑘 𝑡1 . . . 𝑡𝑘

===============⇒ 𝑆

if its proper derivation subtree has a semantic statement

Γ, 𝜄′ ⊢ (𝜎′, 𝛿 ′)
𝑟𝑘 𝑡 ′

1
. . . 𝑡 ′

𝑘
===============⇒ 𝑆 ′

then 𝑡 ′
𝑖
𝜄′𝜎′ ⪰̸ 𝑡

𝑖
𝜄𝜎 .

Proof. Assume that 𝑡 ′
𝑖
𝜄′𝜎′ ⪰ 𝑡

𝑖
𝜄𝜎 .

By Lemma 1, the semantic statement

Γ, 𝜄′ ⊢ (𝜎′, 𝛿 ′)
𝑟𝑘 𝑡 ′

1
. . . 𝑡 ′

𝑘
===============⇒ 𝑆 ′

is well-formed.

By Lemma 3, the derivation tree for

Γ, 𝜄′ ⊢ (𝜎′, 𝛿 ′)
𝑟𝑘 𝑡 ′

1
. . . 𝑡 ′

𝑘
===============⇒ 𝑆 ′

has greater or equal height than that for

Γ, 𝜄 ⊢ (𝜎, 𝛿)
𝑟𝑘 𝑡1 . . . 𝑡𝑘

===============⇒ 𝑆

which contradicts the theorem condition.

□

The theorem justifies that, indeed, our test constitutes a suffi-

cient condition for a divergence: if the execution reaches a relation

call with more general arguments, than those of some enclosing

one, then it has no derivation in our semantics, and, thus, it is not

terminating.

4.2 Conjuncts Reordering
In this section we consider the discipline of conjuncts reordering.

Recall, we flatten all nested conjunctions in clusters ∧𝑔𝑖 , where
none of𝑔𝑖 is a conjunction. To evaluate a cluster, we have to evaluate

its conjuncts one after another, threading the results, starting from

the initial substitution. Each time we evaluate a conjunct, we can

have three possible outcomes:

• The evaluation converges with some result. In this case, we

can proceed with the next conjunct.

• The evaluation diverges undetected. In this case, nothing

can be done.

• A divergence is detected by the test. This is the case when

the reordering takes place.
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Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
𝑡1 ≡ 𝑡2

===========⇒
𝑒
∅, 𝑚𝑔𝑢 (𝑡1𝜄𝜎, 𝑡2𝜄𝜎 ) = ⊥ [UnifyFail+ ]

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
𝑡1 ≡ 𝑡2

===========⇒
𝑒
(𝜎 ◦ Δ, 𝛿 ), 𝑚𝑔𝑢 (𝑡1𝜄𝜎, 𝑡2𝜄𝜎 ) = Δ ≠ ⊥ [UnifySuccess+ ]

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
𝑔1

======⇒
𝑒
𝑆1; Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )

𝑔2
======⇒

𝑒
𝑆2

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
𝑔1 ∨ 𝑔2

============⇒
𝑒
𝑆1 ∪ 𝑆2

[Disj+ ]

Γ, 𝜄 [𝑥 ← 𝛼 ], ℎ ⊢ (𝜎, 𝛿 ∪ {𝛼 })
𝑔

=====⇒
𝑒
𝑆†

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
fresh (𝑥 ) 𝑔

================⇒
𝑒
𝑆†

, 𝛼 ∈ W \ 𝛿 [Fresh+ ]

Figure 4: Improved search: inherited rules

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
𝑟𝑘𝑡1 . . . 𝑡𝑘

===============⇒
𝑒
†, 𝑣𝑖 = 𝑡𝑖 𝜄𝜎, (𝑣1, . . . , 𝑣𝑘 ) ⪰ ℎ 𝑟𝑘 [InvokeDiv+ ]

Γ, 𝜖 [𝑥𝑖 ← 𝑣𝑖 ], ℎ[𝑟𝑘 ← (𝑣1, . . . , 𝑣𝑘 ) ] ⊢ (𝜖, 𝛿 )
𝑔

=====⇒
𝑒

⋃
𝑗 { (𝜎 𝑗 , 𝛿 𝑗 ) }

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
𝑟𝑘𝑡1 . . . 𝑡𝑘

===============⇒
𝑒

⋃
𝑗 { (𝜎 ◦ 𝜎 𝑗 , 𝛿 𝑗 ) }

, 𝑣𝑖 = 𝑡𝑖 𝜄𝜎, Γ 𝑟
𝑘 = 𝜆𝑥1 . . . 𝑥𝑘 .𝑔, (𝑣1, . . . , 𝑣𝑘 ) ⪰̸ ℎ 𝑟𝑘 [Invoke+ ]

Figure 5: Improved search: invocation and divergence detection

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
𝑔1

======⇒
𝑒
†

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
𝑔1 ∨ 𝑔2

============⇒
𝑒
†

[DivDisjLeft+ ]

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
𝑔2

======⇒
𝑒
†

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
𝑔1 ∨ 𝑔2

============⇒
𝑒
†

[DivDisjRight+ ]

Γ, 𝜖 [𝑥𝑖 ← 𝑣𝑖 ], ℎ[𝑟𝑘 ← (𝑣1, . . . , 𝑣𝑘 ) ] ⊢ (𝜖, 𝛿 )
𝑔

=====⇒
𝑒
†

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
𝑟𝑘𝑡1 . . . 𝑡𝑘

===============⇒
𝑒
†

, 𝑣𝑖 = 𝑡𝑖 𝜄𝜎, Γ 𝑟
𝑘 = 𝜆𝑥1 . . . 𝑥𝑘 .𝑔, (𝑣1, . . . , 𝑣𝑘 ) ⪰̸ ℎ 𝑟𝑘 [DivInvoke+ ]

Figure 6: Improved search: divergence propagation

In a general case, for each cluster there can be some converging

prefix 𝜔 we’ve managed to evaluate so far (initially empty), and the

rest of the conjuncts 𝑔𝑖 . Since 𝜔 converges, we have some set of

substitutions 𝑆𝜔 that corresponds to the result of 𝜔 evaluation.

Suppose none of 𝑔𝑖 converges on 𝑆𝜔 (i.e. for each 𝑔𝑖 there is

at least one substitution in 𝑆𝜔 , on which 𝑔𝑖 diverges). We claim

that reordering conjuncts inside 𝜔 would not help. Indeed, with

any other order of conjuncts, 𝜔 either diverges or converges with

the same result (up to the renaming of semantic variables). Thus,

making any permutations inside 𝜔 is superfluous.

Next, suppose we have two different goals 𝑔1 and 𝑔2, which both

converge on 𝑆𝜔 (i.e. both converge on each substitution in 𝑆𝜔 ). Do

we need to try both cases (𝑔1 and 𝑔2) to extend the converging

prefix? It is rather easy to see that if, say, 𝑔2 converges on 𝑆𝜔 , then

it will as well converge on the result of evaluation of 𝑔1 on 𝑆𝜔 .

Indeed, for arbitrary (𝜎, 𝛿) ∈ 𝑆𝜔 we have

. . . ⊢ (𝜎, 𝛿)
𝑔1

======⇒
𝑒
𝑆 ′𝜔

where each 𝜎′ (such that (𝜎′, 𝛿 ′) ∈ 𝑆 ′𝜔 ) is a “more specific”, than

𝜎 , by Lemma 2. By Lemma 3, since 𝑔2 converges on (𝜎, 𝛿) ∈ 𝑆𝜔 , it
converges on each (𝜎′, 𝛿 ′) ∈ 𝑆 ′𝜔 as well.

In other words, to extend a converging prefix we can choose

arbitrary conjunct, which converges immediately after this prefix,

and this choice will never have to be undone.

Now we can specify the reordering discipline. Since we never

re-evaluate a converging prefix, we do not represent it. Thus, each

cluster we consider from now on is a suffix of some initial cluster

after evaluation of some converging prefix (and, perhaps, after some

reorderings performed so far).

Let us have a cluster

∧𝑘
𝑖=1 𝑔𝑖 . We evaluate it on some substi-

tution 𝜎 in the context of some integer value 𝑝 (initially 𝑝 = 1),

which describes, which conjunct we have to try next. We operate

as follows:
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(1) We try to evaluate 𝑔𝑝 on 𝜎 . If the evaluation succeeds with

a result 𝑆 ′, we remove 𝑔𝑝 from the cluster and evaluate the

rest for each substitution in 𝑆 ′ and 𝑝 = 1.

(2) If a divergence is detected, and 𝑝 ≤ 𝑘 , then increment 𝑝 , and

repeat from step 1 (which will try the next goal).

(3) Otherwise, we give up and rollback to the enclosing cluster

(if any).

Thus, we apply a greedy approach: each time we have a con-

verging prefix of conjuncts (possibly empty), and some tail. We try

to put each conjunct from the tail immediately after the prefix. If

we find a converging conjunct, we attach it to the prefix and con-

tinue; if no, then the list of conjuncts diverges. Thus, we can find

a converging order (if any) in a quadratic time. Note, for different

substitutions in the result of a converging prefix evaluation the

order of remaining conjuncts can be different.

4.3 Improved Search Semantics
Here we combine all observations, presented in the preceding

subsections — the divergence test, conjunct clustering and reorder-

ing, — and express the improved search in terms of a big-step oper-

ational semantics that is an extension of the initial one, presented

in Section 2.

We denote “=⇒
𝑒
” the semantic relation for the improved search,

and we add another component to the environment — a history

ℎ, — which maps a relational symbol to a list of fully interpreted

terms as its arguments. As we are (sometimes) capable of detecting

the divergence, besides a regular set of answers 𝑆 as a result of

evaluation we can have a divergence signal, which we denote †; 𝑆†
ranges over both the set of answers 𝑆 and the divergence signal †.

For the convenience of presentation we split the set of semantic

rules into a few groups. The first one is the inherited rules (see

Fig. 4) — those, which did not change (except for the extension in

the environment and evaluation result). Note, the rule Disj
+
does

not handle the divergence detection in either of disjuncts.

The next group describes the invocation and divergence detec-

tion (see Fig. 5). On relation invocation, we first consult with the

history. If the history indicates that the invocation is performed in

the context of the same relation evaluation with more specific argu-

ments, then we raise the divergence signal; otherwise we perform

normally. Note, the rule Invoke
+
does not handle the divergence

in the body of invoked relation.

The next group describes the divergence signal propagation (see

Fig. 6). Here the divergence signal, raised in one of the disjuncts

or in the body of relational definition, is propagated to the upper

levels of the derivation tree.

The final group handles the conjunct reordering (see Fig. 7). As

we need a reordering parameter 𝑝 (see Section 4.2), we introduce

another relation “=⇒
𝑟
” with environment, enriched by 𝑝 .

The rule ClusterStart
+
describes the case, when we make an

attempt to evaluate a cluster. It can happen, when we either first

encounter an original cluster or try to evaluate a suffix of some

initial cluster past some converging prefix. As the reordering starts

now, we recurse to the reordering relation with the parameter 𝑝 = 1

(which means, that the first conjunct will be tried to evaluate next).

Two next rules describe the case, when the 𝑝-th conjunct,

being tried to evaluate, succeeds with some result. In the rule

ClusterStep
+
we handle the case, when all other conjuncts can be

evaluated in the context of that result: we combine the outcomes,

which completes the evaluation of the whole cluster. In the rule

ClusterDiv
+
we consider the opposite case: now there is some

conjunct 𝑔 𝑗 , which raises a divergence signal, being evaluated in

the context of the results, delivered by the evaluation of 𝑔𝑝 . As we

argued in Section 4.2, nothing can be done, and we propagate the

divergence signal.

The rule ClusterNext
+
describes the case, when the 𝑝-th con-

junct raises the divergence signal, and there are some other con-

juncts to try. We increment 𝑝 and proceed.

Finally, in the rule ClusterStop
+
we handle the situation, when

all available conjuncts in a cluster were tried to evaluate first and

raised the divergence signal. We propagate the signal in this case.

The following theorem is rather easy to prove:

Theorem 2. For arbitrary Γ and 𝑔 if

Γ, ⊥ ⊢ (𝜖, ∅)
𝑔

=====⇒ 𝑆

then

Γ, ⊥, ⊥ ⊢ (𝜖, ∅)
𝑔

=====⇒
𝑒
𝑆

Indeed, due to Theorem 1, from the condition we can conclude

that the divergence signal is never raised during the evaluation,

according to “=⇒
𝑒
”; but in this case the evaluation steps coincide

with those, according to “=⇒”. Thus, the improved search preserves

the convergence.

5 IMPLEMENTATION AND EVALUATION
We implemented the improved version of the search, described

in the previous section, as a prototype over existing miniKanren

implementation for OCaml, called OCanren [14]. We added a his-

tory support and the divergence test and changed the syntax to

make relational definitions visible for the interpreter. Programs

in OCanren can be easily converted to respect the new syntax. In

our implementation the divergence propagation is implemented

via exception mechanism that is known to be efficient in OCaml.

With our prototype implementation some answers for a certain

query, being evaluated under the improved search, can be repeated

multiple times in comparison with those delivered by the original

search. While these two situations are indistinguishable w.r.t. our

set-theoretic variant of the semantics, we consider filtering out the

repeating answers as a problem for future work.

We evaluated our implementation on a number of benchmarks —

virtually all available non-refutationally complete queries reported

in the literature, whose incompleteness is caused by conjunction

non-commutativity. With no exceptions, the improved search was

able to fix refutational incompleteness. Thus, we do not know any

realistic cases, which are not improved by our approach. On the

other hand, it is rather easy to construct an artificial counterexample.

For this, we can define a relation

dummy ↦→ 𝜆 𝑥 . dummy (S 𝑥 )
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Γ, 𝜄, ℎ, 1 ⊢ (𝜎, 𝛿 )

𝑛∧
𝑖=1

𝑔𝑖

==========⇒
𝑟
𝑆†

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )

𝑛∧
𝑖=1

𝑔𝑖

==========⇒
𝑒
𝑆†

[ClusterStart+ ]

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
𝑔𝑝

=======⇒
𝑒

⋃
𝑗 { (𝜎 𝑗 , 𝛿 𝑗 ) }; ∀ 𝑗 : Γ, 𝜄, ℎ ⊢ (𝜎 𝑗 , 𝛿 𝑗 )

∧
𝑖≠𝑝

𝑔𝑖

==========⇒
𝑒
𝑆 𝑗

Γ, 𝜄, ℎ, 𝑝 ⊢ (𝜎, 𝛿 )

𝑛∧
𝑖=1

𝑔𝑖

==========⇒
𝑟

⋃
𝑆 𝑗

, 1 ≤ 𝑝 ≤ 𝑛 [ClusterStep+ ]

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
𝑔𝑝

=======⇒
𝑒

⋃
𝑗 { (𝜎 𝑗 , 𝛿 𝑗 ) }; ∃ 𝑗 : Γ, 𝜄, ℎ ⊢ (𝜎 𝑗 , 𝛿 𝑗 )

∧
𝑖≠𝑝

𝑔𝑖

==========⇒
𝑒
†

Γ, 𝜄, ℎ, 𝑝 ⊢ (𝜎, 𝛿 )

𝑛∧
𝑖=1

𝑔𝑖

==========⇒
𝑟
†

, 1 ≤ 𝑝 ≤ 𝑛 [ClusterDiv+ ]

Γ, 𝜄, ℎ ⊢ (𝜎, 𝛿 )
𝑔𝑝

=======⇒
𝑒
†; Γ, 𝜄, ℎ, 𝑝 + 1 ⊢ (𝜎, 𝛿 )

𝑛∧
𝑖=1

𝑔𝑖

==========⇒
𝑟
𝑆†

Γ, 𝜄, ℎ, 𝑝 ⊢ (𝜎, 𝛿 )

𝑛∧
𝑖=1

𝑔𝑖

==========⇒
𝑟
𝑆†

, 1 ≤ 𝑝 ≤ 𝑛 [ClusterNext+ ]

Γ, 𝜄, ℎ, 𝑝 ⊢ (𝜎, 𝛿 )

𝑛∧
𝑖=1

𝑔𝑖

==========⇒
𝑟
†, 𝑝 > 𝑛 [ClusterStop+ ]

Figure 7: Improved search: conjuncts reordering

and consider a query (dummy O ) ∧ fail, where fail — some

never succeeding goal (like A ≡ B). Since the argument of the re-

cursive call to dummy is always performed with a more specific

argument, the divergence test will never succeed, and the whole

query will diverge despite the absence of answers.

In the following subsections we, first, describe the benchmarks

in details and, then, present the results of a quantitative evaluation.

5.1 Relations on lists
As we have seen in Section 3, for some simple relations, like

append𝑜 , a recursive call has to be placed last in the sequence of

conjuncts in order for the relation to be refutationally complete.

Specifically for append𝑜 , with the improved search the divergence

is discovered and refutational incompleteness is fixed regardless

the position of the recursive call.

As a more interesting example, consider the revers𝑜 relation

(see Section 3 for the definition). As we’ve seen, in order for differ-

ent queries to work it requires different orders of conjuncts to be

used in the implementation. Again, the improved search lifts this

requirement. Even more interesting, in the query

fresh (𝑞 ) (revers𝑜 (Cons (A , Nil ) ) 𝑞 )

the divergence is discovered for the recursive call of append𝑜 , but, as
none of conjunct orders within the definition of append𝑜 help, the

improved search goes even further back and switches the conjuncts

within the definition of revers𝑜 . This example demonstrates the

importance of operating on a dynamic invocation order.

Another example we’ve already looked at is relational sort-

ing/permutations. With the improved search, both queries

fresh (𝑞) (perm𝑜 l 𝑞) and fresh (𝑞) (perm𝑜 𝑞 l) terminate for

any list l and now work in a reasonable time. Moreover, now rela-

tional permutations can be used as a (we admit, somewhat exotic)

way to calculate the number of permutations with repetitions.

5.2 Binary arithmetics
The implementation of a refutationally complete relational arith-

metics is an important problem since it is utilized in a number of

elaborated relational specifications. For the performance reasons,

it is preferrable to use binary numbers, not comfy Peano encoding,

which makes the problem more complicated. As it is shown in [3],

the naive implementation of binary arithmetics turns out to be

inappropriate due to multiple problems.

Fixing these problems takes a lot of efforts: it requires some

additional conditions, excess on the first glance, to be introduced

in the specification to ensure the non-overlapping of the cases and

the correctness of number representation. And still, even with all

these improvements, arithmetic relations diverge for some routine
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queries with one order of consituents, and for others with another.

To overcome this problem, arithmetics in the standard miniKanren

implementation [7] uses digital logic and some advanced techniques

of bounding the sizes of the terms [12]. As a result, the implemen-

tation, proven to be refutationaly complete, is quite complicated

and takes time to understand.

At the same time, some of these problems are exactly the con-

sequences of the non-commutativity of conjunction. Thus, the im-

proved search makes it possible to stick with the naive version (for

addition, multiplication, comparisons, division with a reminder)

without complicated optimizations.

As the most impressive example, for the division with a reminder,

instead of a very complicated recursive definition from [7] (20 lines

of code, not including auxiliary functions), one can just write down

the following definition

div𝑜 ↦→ 𝜆 𝑥 𝑦 𝑞 𝑟 .

(fresh (yq )

(mult𝑜 𝑦 𝑞 𝑦𝑞 ) ∧
(plus𝑜 𝑦𝑞 𝑟 𝑥 ) ∧
(lt𝑜 𝑟 𝑦 )

)

and for all queries

fresh (𝑞 𝑟 ) (div𝑜 23 5 𝑞 𝑟 )

fresh (𝑦 𝑞 𝑟 ) (div𝑜 19 𝑦 𝑞 𝑟 )

fresh (𝑥 𝑟 ) (div𝑜 𝑥 17 4 𝑟 )

the search terminates and shows the performance, comparable with

the advanced version (here 𝑛 denotes a binary representation of

the number 𝑛). However, in this case we do not have a proof of

refutational completeness.

5.3 Binary trees
For a natural representation of binary trees using two construc-

tors Leaf and Node (𝑙 , 𝑟 ), it is easy to implement the relation to

count the number of leaves in a tree (using arithmetic relations

plus𝑜 for addition and pos𝑜 for positivity):

leaves𝑜 ↦→ 𝜆 𝑡 𝑠 .

( ( 𝑡 ≡ Leaf ) ∧ (𝑠 ≡ 1 ) ) ∨
(fresh (𝑙 𝑟 𝑠𝑙 𝑠𝑟 )

(𝑡 ≡ Node (𝑙 , 𝑟 ) ) ∧
(pos𝑜 𝑠𝑙 ) ∧
(pos𝑜 𝑠𝑟 ) ∧
(leaves𝑜 𝑙 𝑠𝑙 ) ∧
(leaves𝑜 𝑟 𝑠𝑟 ) ∧
(plus𝑜 𝑠𝑙 𝑠𝑟 𝑠 )

)

By running this relation backwards

fresh (𝑞 ) (leaves𝑜 𝑞 𝑛 )

it becomes possible to generate all binary trees with given num-

ber of leaves 𝑛. The improved search provides the termination of

this query; the number of discovered answers corresponds to the

number of such trees, so this relational program may be seen as

(an exotic) way of calculating the Catalan numbers.

relation size optimistic optimistic
+

pessimistic pessimistic
+

append
𝑜

100 0.0640 0.0706 0.3339 0.0795

200 0.3604 0.5409 3.4632 0.4953

300 1.6803 1.9091 14.6674 2.0216

revers
𝑜

30 0.0251 0.0439 0.1753 0.0453

60 0.1634 0.3069 4.3270 0.3230

90 0.5830 1.0870 20.8215 1.0620

sort
𝑜

2 0.0002 0.0003 0.0007 0.0028

3 0.0013 0.0004 0.0481 0.0046

4 0.0009 0.0022 — 0.0108

30 0.7473 1.2663 — 36.2886

perm
𝑜

2 0.0006 0.0009 0.0022 0.0040

3 0.0009 0.0017 — 0.0161

6 0.5445 0.8317 — 4.5092

mult
𝑜

4 0.0049 0.0057 0.0475 0.0077

5 0.0145 0.0151 19.7969 0.0189

8 0.1887 0.2397 — 0.9222

div
𝑜

3 0.0073 0.0072 0.0256 0.0568

4 0.0173 0.0212 — 0.3543

5 0.0942 0.1018 — 4.5093

leaves
𝑜

4 0.0125 0.0101 0.0126 0.0151

5 0.0439 0.0508 60.1352 0.0553

8 3.6135 3.6208 — 3.7984

Figure 8: The results of a quantitative evaluation: running
times of benchmarks in seconds

5.4 Interpreters
Program synthesis with relational interpreters is one of the most

useful applications of miniKanren. The construction of a relational

interpreter for a small Scheme-like language is considered in details

in [6]. However, this simple interpreter also reveals some problems,

caused by the non-commutativity of conjunction. For example,

consider the following query:

fresh (𝑒1 𝑒2 𝑟1 𝑟2) (eval𝑜 (list 𝑒1 3 𝑒2 ) Nil (𝑟1 4 𝑟2 ) )

Here the first argument of 𝑒𝑣𝑎𝑙𝑜 is a program (a list of some-

thing (𝑒1), 3, and something (𝑒2)), which is evaluated in an empty

environment (𝑁𝑖𝑙) into a list of something (𝑟1), 4, and something

(𝑟2). Clearly, there are no 𝑒1, 𝑒2, 𝑟1, 𝑟2 to fulfill this contract, yet

the evaluation leads to a divergence under the conventional search;

no simple reordering can fix it. Under the improved search, how-

ever, the contradiction is found and the query terminates with no

answers. Relational interpreters, used in practice for more complex

problems [4], include a lot of optimizations and take significant

effort to implement. We hope that some performance problems

with them are caused by the non-commutativity and can be fixed

automatically with the improved search.

5.5 A Quantitative Evaluation
While the improved search indeed fixes all considered realistic

cases in a qualitative sense, it still introduces some runtime over-

head when no divergence is detected. In order to assess the overall

performance gain, we performed a quantitative evaluation.

As we’ve pointed out earlier, the performance of the same speci-

fication essentially depends on the “direction” of the query being

evaluated. Moreover, the improved search can be faster than the

original for one direction and slower for another, which make the
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quiantitative evaluation problematic. In order to cope with this

difficulty we considered two important versions for each of the

benchmarks — “optimistic”and “pessimistic”. Both versions were

constructed by a careful analysis of each specification-query pair.

As a result of the analysis, the “important” conjunctions were dis-

covered. The order of conjuncts in these conjunctions was adjusted

to provide the fastest convergence for the optimistic version and

the slowest for the pessimistic one. Thus, to some extent these

versions provide the efficiency boundaries for a benchmark: when

the “direction” of a query plays along with the order of conjuncts

in the specification, the whole specification-query performs as in

optimistic version; otherwise the pessimistic scenario takes place.

Our conjecture was that the improved search would speed up the

pessimistic cases and slow down the optimistic, thus we’ve run the

improved search for both versions and compared the running time

against that for the original search. The running time in seconds is

shown on Fig. 8 (the results for the improved search are marked by

“
+
” superscript); by “–” we marked the cases, when the search did

not complete in two minutes
3
. The workstation configuration was

Intel Core i7 CPU M 620, 2.67GHz x 4, 8GB RAM running Ubuntu

16.04. We used a native-code OCaml compiler with optimistic set-

tings for the garbage collector to prevent it from interfering and

blurring the results.

For all benchmarks, under the improved search the convergence

depended neither on the direction of queries, nor on the order of

conjuncts. With the exception of very small input sizes, the im-

proved search provided a speedup of up to few orders of magnitude

in pessimistic cases. At the same time, the slowdown of optimistic

cases under the improved search did not exceed a factor of 2. The

behavior in the pessimistic cases also allows us to discriminate

between two interesting situations:

• either in the pessimistic case the standard search was much

slower than the improved one, but still measurable, and

the improved search worked with approximately the same

performance, as the standard search for the optimistic case;

• or in the pessimistic case the standard search quickly be-

came non-measurable (indicated by “—”), and the improved

search for the pessimistic case worked much slower, than

the standard one for the optimistic case, but still measurable.

We may conclude that for the wide variety of realistic cases our

improvement indeed delivers a fully-automatic and lightweight

way to provide refutational completeness. In some cases, however,

in order to achieve the best performance, a relational specification

has to be optimized manually.

6 RELATEDWORKS
The non-commutativity of conjunction evaluation in miniKan-

ren is a well-known problem. In [3] some language extensions are

discussed that, presumably, can be used to provide the commuta-

tivity. They include both simple enumeration of conjunct orders

and more advanced techniques, based on a combination of tabling,

parallel goal evaluation, and continuations. However, by now no

successful implementations were reported. The tabling technique,

described in the same work, can indeed be used to provide the

3
The evaluation repository is available at https://github.com/rozplokhas/

OCanren-improved-search

convergence of some queries, but it deals with the problems, or-

thogonal to the non-commutativity, and, thus, does not heal the

queries, which we do (but heals some other cases, like divergence

of path-finding queries for graphs with cycles, which we do not).

For a number of problems, some ad-hoc refutationally complete

solutions were already presented before. For example, in [7] a num-

ber of relations for binary arithmetics, implemented using the idea

of bounding the sizes of terms, are presented. In a follow-up pa-

per [12] this technique is explained in details, and the proof of refu-

tational completeness is given. Unfortunately, the specifications,

written using this technique, are verbose and hard to understand,

and the implementation requires insight. Our improvement, on

the other hand, makes it possible to stick with the simplest def-

initions, and although we do not provide a proof of refutational

completeness for each case, for the majority of realistic queries

they converge and demonstrate the same performance, as those,

implemented with advanced methods.

In a broader context of logical programming, the problem of

search convergence/termination was addressed multiple times.

However, it is rather hard to establish a direct correspondence

between our proposal and the reported results, since they were

developed for essentially different language. For example, in [19] a

tabling-based improvement of a resolution-based search — OLDT

resolution — is described, and a complete search strategy is de-

veloped. However, in miniKanren the original search is already

complete, and we address rather a different issue. We can speculate,

that OLDT resolution roughly corresponds to the miniKanren with

tabling and, thus, possesses the same properties, and relates to our

proposal in a similar manner.

An approach to a static transformation of logic programs is

described in [16]. Given a definitional program and a query, the

transformation results in a new program and a new query that is

guaranteed to converge in a finite number of steps under arbitrary

search strategy. The approach is proven to be sound and complete

for queries that deliver a finite number of solutions, and utilizes

the fact, that all these solutions can be discovered via a complete

traversal of an SLD-tree up to a finite depth. The authors introduce

a sufficient condition for the finiteness of the number of solutions

by utilizing the notion of level mapping and present a method to

calculate the limit for the SLD-tree depth. The important distinction

with our proposal is that we perform a dynamic analysis; as we

argued in Section 3, there are cases, when no concrete static form of

a specification can guarantee convergence for any query of interest.

In addition, our approach detects the divergence rather than the

convergence of program evaluation.

7 CONCLUSION
We presented an improvement of a search strategy for relational

programming that is aimed at improving refutational completeness.

We’ve proven that in the case of a finite number of answers our

modification is a proper improvement over the original strategy

in terms of convergence. Our evaluation shows, that w.r.t. the im-

proved searchmany practically important refutationally incomplete

queries became refutationally complete; in addition, in a number

https://github.com/rozplokhas/OCanren-improved-search
https://github.com/rozplokhas/OCanren-improved-search
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of cases the performance was greatly improved since our modifica-

tion, as a side effect, causes the search to choose more “optimistic”

branches.

We can identify the following directions for future work.

First, we believe, that our result on refutational improvement for

a finite number of answers can be extended to the general case as

well (note, in our current development we did not make any use

of the completeness property of miniKanren search). For this, we

would also need another, more general, semantics.

Another direction is extending the language with disequality

constraints. Our evaluation has shown, that disequality constraints

do not compromise our improvement in all user benchmarks, but

we do not have a proof, that they are indeed harmless.

Next, we are working on a certified proof of the main theorem

in Coq.

Finally, our practical evaluation is performed only for a prototype.

We consider the embedding of our improvement in a full-fledged

implementation to be an important task.
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