
From Explicit Allowances to Defeasible Deontic
Operators: A Modal View

Agata Ciabattoni1[0000−0001−6947−8772], Josephine Dik1(�)[0009−0003−6149−5684],
Emiliano Lorini2[0000−0002−7014−6756], Dominik Pichler1[0009−0003−1790−2983], and

Dmitry Rozplokhas1[0000−0001−7882−4497]

1 TU Wien, Austria
{agata,josephine,dominik,dmitry}@logic.at

2 IRIT, CNRS, Toulouse University, France
emiliano.lorini@irit.fr

Abstract. Preference-based deontic logics provide a foundation for normative
reasoning but fail to distinguish between explicit allowances – specified by a
designer – and implicit ones derived by inference. This distinction is crucial in
systems where agents may act only if (explicitly or implicitly) permitted. In this
paper, we formalize this inference by grounding the preference ordering over
possible worlds in a permission base, i.e., a set of explicit allowances, and de-
rive implicit permissions, as well as defeasible prohibitions and obligations. Our
framework provides solutions to key deontic paradoxes and is a conservative ex-
tension of Åqvist’s dyadic deontic system F extended with cautious monotony.
We illustrate the approach with a case study involving robotic agents operating
under normative constraints and provide complexity results together with a QBF-
based decision procedure to support automated reasoning.
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1 Introduction

In designing effective and reliable AI agents, it is essential to ensure that they act
only when permitted to do so. Permissions, and deontic concepts in general, are inher-
ently conditional. Their formal analysis relies on dyadic deontic systems (see e.g. [11]),
among which the family with preference-based semantics is the most well-known. This
approach was originally developed by [6,13], and later adapted to a modal logic setting
by [2] and [23]. Prominent preference-based deontic logics include Åqvist’s systems E,
F and G [2], and the systems in [21] and [7]. They offer an adequate treatment of one of
the core challenges in normative reasoning, i.e., the handling of contrary-to-duty (CTD)
norms, which are norms (obligations or prohibitions) that arise when other norms are
violated. However, they do not distinguish between explicit permissions, which are al-
lowances directly specified by a system designer, and implicit permissions, which arise
through logical inference. This distinction is crucial in contexts where the system de-
signer specifies an agent’s behavior by providing a finite set of explicit permissions,
with the expectation that these will fully determine the agent’s actions, both directly
and through any permissions that can be logically inferred from them.
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In this paper, we propose a formal mechanism which answers the question: Given
(i) a set of explicitly defined allowances in the form of unary permissions, and (ii) con-
tingent information about the domain; assuming that the agent may act only if explicitly
or implicitly permitted, what actions is the agent allowed to take in a specific situation?
Our goal is related to that of [7], which focuses on determining ideal outcomes from a
set of deontic norms. Here, in addition, we aim to answer the above question by devel-
oping a preference-based deontic logic grounded in permission bases.

Our framework builds on a computationally grounded semantics for modal logic
developed in a series of works by Lorini et al., originally focused on epistemic rea-
soning [26,27,29,30], and later extended to model mental attitudes [25], and causal
reasoning [24,28]. In this semantics, the states (or worlds) in a model are not treated as
primitive entities, as in standard modal logic semantics, but are instead decomposed into
two components: a knowledge base and a propositional valuation. Moreover, the acces-
sibility relations between possible states are not given as primitives but are computed
from the knowledge bases. The idea of distinguishing explicit information from implicit
one is also found in prior work in linguistics [20] and knowledge representation [19].

The knowledge bases of our framework consist of explicit allowances (permission
bases), are used to determine the preference ordering over possible states. We con-
sider two variants: one in which the permission base remains fixed across all states
–corresponding to the addition of the Absoluteness property within the semantics– and
one in which it does not. These are conservative extensions of PCLTU and PCLTA,
variants of Burgess’ logic PCL [5], respectively (see Section 2.2 for details); PCLTA
coincides with the deontic system F introduced by Åqvist, augmented with cautious
monotony (CM), an important property of non-monotonic systems introduced in [10].
In this paper, we focus on the case with Absoluteness, and together with the standard
notions of obligation and prohibition defined in terms of permissions, we introduce a
defeasible variant relative to the permission base. Our approach also provides a unified
formalization of the three types of permissions from [14]: explicit, implicit, and tacit
permissions, see also [4]. Explicit permissions are granted in a top-down manner, im-
plicit permissions can be logically derived from the explicit ones, and tacit permissions
correspond to the absence of (defeasible) prohibitions.

To analyze the behavior of our framework, we examine its response to prominent de-
ontic paradoxes concerning permission (Free Choice Permission [18] and Ross’s Para-
dox [37]) and demonstrate that our defeasible operators handle CTD scenarios as ex-
pected, while avoiding the problem of preference-based systems identified by [17] with
the ‘asparagus paradox’. We illustrate our approach with a case study involving robotic
agents operating under normative constraints and provide a PSPACE complexity result
together with a QBF-based decision procedure to support automated reasoning.

2 Formal Framework

We present a novel preference-based semantics for deontic reasoning. This semantics
incorporates the notion of explicit allowance and uses it to compute the preference
ordering over possible states within a model. We will leverage it to interpret a language
that combines the notions of explicit allowance and implicit conditional permission.
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2.1 Semantics and language

Assume to have a countably infinite set of atomic propositions Atm = {p, q, . . .}. We
define the language L0 for explicit allowances by the following grammar:

L0
def
= α ::= p ∈ Atm | ¬α | α ∧ α | △α,

The connectives ⊤, ⊥, ∨ and → are classically defined as usual. The operator △ is used
to represent explicit allowances: the formula △α is read as “α is explicitly permitted”.
L0 is the first layer of the language.

Unlike standard semantics of modal and deontic logic where a state is a primitive,
in our semantics a state has two components: a base of explicit allowances (permission
base) and a propositional valuation representing the atoms that are true at the state.

Definition 1 (State). A state is a pair S = (B ,V ) with B ⊆ L0 a finite set of explicit
allowances (or permission base) and V ⊆ Atm a propositional valuation. The set of
states is denoted by S.

Formulas of the language L0 are interpreted relative to a state, as follows (Boolean
cases are omitted, as they are defined in the usual way).

Definition 2 (Satisfaction relation). Let S = (B ,V ) ∈ S:

S |= p⇐⇒ p ∈ V ,

S |= △α⇐⇒ α ∈ B .

Note in particular the interpretation of the explicit allowance modality △: α is ex-
plicitly permitted if α is included in the permission base. Given S, S′ ∈ S let

Sat(S′, S) = {α ∈ B | S′ |= α}

be the set of explicit allowances from state S that are satisfied at state S′. The follow-
ing definition introduces the preference ordering over states. We compute it from the
explicit allowances in a permission base.

Definition 3 (Preference ordering). Let S, S′, S′′ ∈ S, S = (B ,V ), S′ = (B ′,V ′),
S′′ = (B ′′,V ′′). Then we define S′′ ⪯S S′ if and only if Sat(S′′, S) ⊆ Sat(S′, S).
Furthermore, we write S′′ ≺S S′ if and only if S′′ ⪯S S′ and S′ ̸⪯S S′′.

S′′ ⪯S S′ means that relative to the state S, state S′ is at least as good (or ideal)
as state S′′. According to Definition 3, the latter holds if the set of explicit allowances
from the permission base of S that are satisfied at S′′ is included in the set of explicit
allowances from the permission base of S that are satisfied at S′.

For states S = (B ,V ) and S′ = (B ′,V ′), we srite S ≡ S′ if they share the same
permission base, i.e., S ≡ S′ iff B = B′. Note that S ≡ S′ leads to ⪯S=⪯S′ .

A model is a state together with a set of states containing it, called the context. The
context includes all states compatible with the current hard information, where hard
information –facts treated as fixed and commonly known. Formally:
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Definition 4 (Model). A model is a pair (S,U) with S ∈ U ⊆ S. The class of models
is denoted by M.

We analyze below the properties of the preference ordering for the models of Def. 4.

Lemma 1. Let (S,U) ∈ M. Then, i) the ideality ordering ⪯S is a preorder, and ii)
every nonempty X ⊆ U contains a ⪯S-maximal element.

Proof. Item i) follows directly from Def. 3 and the fact that the subset relation ⊆ is
reflexive and transitive. For item ii), let S = (B, V ). The only way X could not have a
maximal element would be that there exists an infinite increasing chain of states inside
of X . By assumption, B is finite. Hence, such a chain cannot exist. ⊓⊔

We now consider the subclass of normatively absolute models, where the permission
base is constant across all states, a standard assumption in preference-based deontic
logics such as Åqvist [2] and Kratzer [21].

Definition 5 (Normatively absolute model). A model (S,U) is normatively absolute
if ∀S′, S′′ ∈ U, S′ ≡ S′′. The class of normatively absolute models is denoted Mabs .

Normatively absolute models satisfy the following absoluteness property:

if (S,U) ∈ Mabs then ∀S′, S′′ ∈ U,⪯S′=⪯S′′ . (1)

We extend the language L0 with a dyadic modal operator for implicit conditional
permission. The new language, denoted by L, is defined by the following grammar:

L def
= φ ::= α | ¬φ | φ ∧ φ | φ3 φ,

where α ranges over L0. Again, the connectives ⊤, ⊥, ∨, and → are classically defined
as usual. The formula ψ 3 φ reads as “φ is implicitly permitted conditional to ψ”.

Formulas of the language L are interpreted relative to a model as follows. (Boolean
cases are omitted as they are defined in the usual way.)

Definition 6 (Satisfaction relation (cont.)). Let (S,U) ∈ M. Then:

(S,U) |= α⇐⇒ S |= α,

(S,U) |= ψ 3 φ⇐⇒ ∃S′ ∈ Best(ψ,S,U) such that (S′, U) |= φ,

Best(ψ,S,U) =
{
S′ ∈ U | (S′, U) |= ψ, ∄S′′ ∈ U s.t. (S′′, U) |= ψ and S′ ≺S S′′}.

Hence φ is implicitly permitted given ψ if there is at least one ψ-most preferred
state where φ holds.

As a consequence of Lemma 1, we can conclude that for any model (S,U) and
formula ψ, if there exists a state satisfying ψ there exists a ⪯S-maximal ψ state.

Corollary 1. Given a model (S,U) ∈ M. If the set {S′ ∈ U : (S′, U) |= ψ} ̸= ∅ then
Best(ψ,S,U) ̸= ∅.

Validity and satisfiability for M (resp. Mabs ) are defined in the expected way.
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Definition 7 (Validity and satisfiability). φ is valid for the class M (resp. Mabs ),
denoted by |=M φ (resp. |=Mabs φ), if (S,U) |= φ for every (S,U) ∈ M (resp.
∈ Mabs ). φ is satisfiable for the class M (resp. Mabs ) if ̸|=M ¬φ (resp. ̸|=Mabs ¬φ).

Furthermore, the notion of logical consequence is defined as follows.

Definition 8 (Logical consequence). Given a finite set of formulas Σ and a formula
φ we say that φ is a logical consequence of Σ in M (resp. Mabs ), denoted Σ |=M φ
(resp. Σ |=Mabs φ), if for all (S,U) ∈ M (resp. for all (S,U) ∈ Mabs ):

if ∀S′ ∈ U, (S′, U) |=
∧
ψ∈Σ

ψ then ∀S′ ∈ U, (S′, U) |= φ.

As shown below, the universal modality can be defined in terms of 3. This will
permit us to express the previous notion of logical consequence in the language L.

2.2 Properties

In this section, we first analyze the key properties of the operator 3 in isolation and then
examine its interaction with the operator △ to highlight the relationship between ex-
plicit and implicit permission. We then show that our models generalize the preference-
based models underlying the well-known conditional logics PCLTU and PCLTA (i.e.
Åqvist’s logic F + cautious monotony) for M and Mabs , respectively.

The universal modality is definable. We begin by showing that the universal modal-
ity, along with its dual, the existential modality, can be defined through the following
abbreviations using the dyadic modality 3: ♢φ def

= φ3 φ, and □φ
def
= ¬♢¬φ.

Lemma 2. Let (S,U) ∈ M. Then, the following are equivalent: (i) there exists S′ ∈ U
such that (S′, U) |= φ, and (ii) (S,U) |= ♢φ.

Proof. Assume (i). By Lemma 1, there is a state S′′ ∈ Best(φ, S, U), and by Defini-
tion 6, this state satisfies φ. Hence, by the semantics of the conditional modality, we
have (ii). For the converse, assume (ii). By the satisfaction condition for 3, it follows
that there exists a state in Best(φ, S, U) that satisfies φ, which implies (i). ⊓⊔

Notice that, in the light of Lemma 2, it is easy to show that the modality □ is an S5
modality. Moreover, we have the following validities for the class Mabs :

|=Mabs △α→ □△α, (2)
|=Mabs ¬△α→ □¬△α, (3)
|=Mabs (φ3 ψ) → □(φ3 ψ), (4)
|=Mabs ¬(φ3 ψ) → □¬(φ3 ψ). (5)

The following deduction theorem is a direct corollary of Lemma 2. Since the uni-
versal modality can be represented in the language L, the notion of logical consequence
of Definition 8 is also syntactically expressible.

Theorem 1. Let Σ be a finite set of formulas and φ a formula. Then,

Σ |=M φ iff |=M □
( ∧
ψ∈Σ

ψ
)
→ φ and Σ |=Mabs φ iff |=Mabs □

( ∧
ψ∈Σ

ψ
)
→ φ.
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Interaction between explicit allowance and implicit conditional permission. As a
next step, we analyze the △ operator and its interaction with the conditional modality 3.
We begin by noting that △ is a syntactic operator, meaning it is fully intensional. That
is, △α and △β are not necessarily semantically equivalent, even if α ↔ β is a propo-
sitional tautology. This is due to the fact that the evaluation of an explicit allowance
△α depends solely on whether α ∈ B, where B is the permission base associated with
a state. Since B is predefined and syntactic in nature, the truth value of the formula
α does not influence the truth value of △α. For instance, consider a model with state
S = ({α}, ∅). Then it holds that S |= △α ∧ ¬△(α ∨ α).

This intensionality is desirable for explicit allowances, as such permissions have no
logical consequences beyond their syntax. Thus, stating α or β is not equivalent—even
if α is semantically equivalent to β—since only α may appear in the permission base.
In particular, by not closing the permission base under logical equivalence, we maintain
its finiteness, aligning with the notion of issuing a finite set of explicit instructions.

Given a model (S,U) and states S′ ∈ U , Definition 3 implies the following: if
α ∈ B and (S′, U) |= α, then for all S′′ ∈ U such that S′ ⪯S S′′, we have (S′′, U) |=
α. This captures the idea that explicit allowance cannot make a state worse by being
true—anything explicitly permitted preserves or improves the deontic status.

We now examine the interaction between explicit allowances and conditional im-
plicit permissions. A key observation is that explicit permissions generate implicit ones.
Specifically, if α is explicitly allowed in a state, then α is implicitly permitted under any
condition φ such that φ∧α is possible. Formally: (△α∧♢(φ∧α)) → (φ3α). In partic-
ular, α is implicitly permitted unconditionally (i.e., under condition ⊤): (△α∧♢α) →
(⊤ 3 α). Moreover, if an explicit conditional permission △(β → α) is given and
β ∧ α is possible, then the corresponding implicit conditional permission also holds:
(△(β → α) ∧ ♢(β ∧ α)) → (β 3 α). We prove these in the following Theorem 2.

Theorem 2. We have the following validities:

|=M (△α ∧ ♢(φ ∧ α)) → φ3 α (6)
|=M (△α ∧ ♢α) → ⊤ 3 α (7)
|=M (△(β → α) ∧ ♢(β ∧ α)) → β 3 α (8)

Proof. For the first validity, assume S = (B, V ) ∈ U and (S,U) |= △α ∧ ♢(φ ∧ α).
Then there exists a state S′ ∈ U such that (S′, U) |= φ ∧ α. Consider the following set
X = {S′′ ∈ U : (S′′, U) |= φ and S′ ⪯S S′′}. S′ ∈ X , so by Lemma 1, there exists a
⪯S-maximal state S∗ in X . S∗ ∈ Best(φ, S, U) (otherwise S∗ would not be maximal
in X) and (S∗, U) |= α by Definition 3 (since α ∈ B and (S′, U) |= α and S′ ⪯S S∗).
So (S,U) |= φ3 α by Definition 6. The second validity is the instance of the first one
with φ = ⊤. The proof of the third validity is analogous: for state S′ ∈ U such that
(S′, U) |= β ∧ α we consider set X = {S′′ ∈ U : (S′′, U) |= β and S′ ⪯S S′′} and
⪯S-maximal state S∗ in it. Since (S′, U) |= β → α, also (S∗, U) |= β → α (since
(β → α) ∈ B and S′ ⪯S S∗), therefore (S∗, U) |= α, and thus (S,U) |= β 3 α. ⊓⊔

Explicit conditional permissions like △(β → α) do not derive implicit permissions
under arbitrary additional assumptions; i.e., in general the following formula is not
valid: (△(β → α) ∧ ♢(β ∧ α ∧ φ)) → φ3 α.
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Example 1. Consider the model (S1, {S1, S2}) where both states share the same per-
mission base B = {β → α, γ}, we draw an arrow from S1 to S2 iff S1 ≺S1

S2:

S1 S2β, α, φ γ, φ

Here, S1 satisfies △(β → α) ∧ ♢(β ∧ α ∧ φ). Yet S2, which satisfies all elements
in the permission base, is the only element in Best(φ, S1, U). Since S2 does not satisfy
α, we have (S1, U) ̸|= φ3 α.

We have seen that explicit permissions generate implicit ones, but they are not so
strong as to entail prohibitions (negated permissions ¬(⊤3α)) or obligations (duals of
permissions ¬(⊤ 3 ¬α)). This is because an explicit permission of α merely ensures
that α holds in some best state if it is possible—i.e., ♢α—but does not require that all
best states satisfy α. Therefore, the following is not valid: (△α ∧ ♢α) → ¬(⊤ 3 ¬α)

Example 2. Take the model (S1, {S1, S2}) such that S = (B, V ′) and S2 = (B, V ′′)
with B = {p, q}, V ′ = {p} and V ′′ = {q}. In this model, S1 satisfies △p ∧ ♢p. The
state S2 is in Best(⊤, S1, U) and satisfies ¬p. Therefore, (S1, U) |= ⊤3¬p still holds.
This shows that the explicit permission for p does not yield a prohibition for ¬p, nor
does it entail the obligation of p, i.e., ¬(⊤ 3 ¬p).

Note that explicit permissions are stronger than implicit ones, since an unconditional
implicit permission does not imply a conditional implicit permission. More specifically,
((⊤ 3 α) ∧ ♢(φ ∧ α)) → (φ 3 α) is not valid as shown by the following model
(S1, {S1, S2, S3}) where all states share the same permission base B = {γ1, γ2}:

S3 S2 S1α, φ γ1, φ
γ1, γ2, α

Here, S1 satisfies ⊤3α and ♢(φ∧α). Yet S2 is the only element in Best(φ, S1, U).
As S2 does not satisfy α, we have (S1, U) ̸|= φ 3 α. This example shows that the
permission base B grounds the ideality ordering in such a way that explicitly permitted
formulas are still satisfied when moving up the order. In the case α is added to B this
model is no longer an element of the class M since the state S′ invalidated Def. 3.

Connection with conditional logics. Implicit permissions alone behave like (dual)
conditionals in standard conditional logics. We show that formulas in the following
triangle-free fragment of our language:

L3
def
= π ::= p | ¬π | π ∧ π | π 3 π,

valid w.r.t. M and Mabs correspond to the theorems of the conditional logics PCLTU
and PCLTA, respectively. Both logics belong to a foundational family [9] of extensions
to preferential conditional logic PCL [5]. Specifically, PCLTU is a variant of PCL with
models satisfying Total Reflexivity and Uniformity [9], while PCLTA adds Absolute-
ness, where all worlds share the same ordering. The latter is well-known in the deontic
logic literature as a member of Åqvist’s family (i.e. F with cautious monotonicity [35]).
These logics are based on the following notion of preference models.
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Definition 9 (Preference model). A preference model is a tuple M = ⟨W,⪯,V⟩,
where W is a set of worlds, V :W → 2Atm a valuation on W , and ⪯ is a ternary
(world-indexed) preference relation: ⪯w is a preorder on W for each world w. The
satisfaction relation is defined as follows. (Again, boolean cases are omitted as they are
defined in the usual way.)

(M,w) |= p⇔ p ∈ V(w),
(M,w) |= π1 3 π2 ⇔ ∃u ∈ Best(π1,w,M), (M,u) |= π2.

where Best(π,w,M) = {v ∈W | (M, v) |= π and ∄v′ ∈ W : (M, v′) |= π and
v ⪯w v′ and v′ ̸⪯w v}.

The definition of preference models in [9] is more general than this one. We use
here a simpler version with preference relation being defined over the whole set of
worlds — the consequence of Total Reflexivity and Uniformity. Another property stan-
dardly assumed for preference models is the limit assumption [23] (also known as
stoppering [33] or smoothness [22]): For every w, u ∈ W if (M,u) |= π then either
u ∈ Best(π,w,M) or there exists v ∈ Best(π,w,M) such that u ⪯w v and v ̸⪯w u.
This condition is ubiquitous in studies of conditional logics, yet it is non-trivial and
depends not only on the model’s structure (i.e., the frame) but also on the evaluation of
formulas. An alternative to this assumption, used in [9], employs a significantly more
complicated truth condition for evaluation of conditionals. These alternatives are known
to give rise to the same valid formulas [23]. Here we adhere to the simpler version of
the truth condition, since for models in M, smoothness arises naturally as a corollary of
the (much simpler) requirement of finiteness of permission bases. Logic PCLTU is de-
fined by preference models satisfying smoothness, while PCLTA additionally requires
Absoluteness, i.e. preference models where ⪯w1

=⪯w2
for allw1, w2 ∈W . We say that

a formula π ∈ L3 is valid in PCLTU (|=PCLTU π) if it is satisfied in all worlds of all
smooth preference models, and is valid in PCLTA (|=PCLTA π) if it is satisfied in all
worlds of all smooth preference models satisfying Absoluteness.

Models in M are instances of preference models with preference relations given
by {⪯S}S∈U . Conversely, we show that an arbitrary preference relation over a finite
model can be grounded by some selected finite permission base. Since, as shown in [9],
PCLTU and PCLTA satisfy the finite model property, this implies that our framework
is a conservative extension of the conditional logics PCLTU and PCLTA.

Theorem 3 (Conservativity). Let π ∈ L3. Then, i) |=M π iff |=PCLTU π; and ii)
|=Mabs π iff |=PCLTA π.

Proof. The directions from right to left are straightforward, since (S,U) ∈ M corre-
sponds to a preference model satisfying the limit assumption (with the set of worlds U
and the preference relation by Definition 3), and (S,U) ∈ Mabs also satisfies Absolute-
ness. For the opposite directions, we use finite model property for PCLTU and PCLTA
and show that any preference model M = ⟨W, {⪯w}w∈W ,V⟩ with finite W such that
(M,w0) ̸|= π for somew0 ∈W can be transformed into a grounded model (S,U) ∈ M
such that (S,U) ̸|= π, and this transformation preserves Absoluteness. Specifically, let
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Atm(π) be a set of all atoms appearing in π. Since Atm is infinite, we can take an injec-
tive mapping χ :W×W → (Atm \Atm(π)) that selects some fresh atom for each pair
of worlds. Consider the following transformation of a world inW into a grounded state:
S(w) = (Bw,V(w)∪

⋃
v∈W Prv(w)) where Bv = {χ(v, u) | u ∈W} is a set of fresh

explicit allowances in v corresponding to all worlds and Prv(w) = {χ(v, u) | u ⪯v w}
is the set of such allowances for predecessors of w w.r.t. ⪯v . Then the ideality order-
ing generated by the mapped state S(v) (Def. 3) coincides with ⪯v: if u ⪯v w then
Prv(u) ⊆ Prv(w) ⊆ Bv by transitivity of ⪯v and so S(u) ⪯S(v) S(w), conversely
if u ̸⪯v w then χ(v, u) ̸∈ Prv(w) while χ(v, w) ∈ Prv(w) by reflexivity of ⪯v so
S(u) ̸⪯S(v) S(w). This implies (S(z), {S(w)}w∈W ) |= π iff M, z |= π for z ∈ W
(since S(·) preserves all orderings and the valuation on Atm(π), which fully determine
the evaluation of π), therefore (S(w0), {S(w)}w∈W ) |= π. Note that this transforma-
tion preserves the absoluteness, so the case of Mabs is covered as well. ⊓⊔

3 Case Study

Consider a mobile robot that moves in a space while complying with the rules explicitly
specified by the system designer. These include what the robot is allowed to do when
they encounter an intersection: a) the robot is allowed to cross an intersection when the
traffic light is green, b) the robot is allowed to cross an intersection when the traffic
light is green or orange, and no other vehicle is approaching the intersection from the
right. These two explicit allowances are expressed as: all1

def
= △(gr → cr), and

all2
def
= △

((
(gr ∨ or) ∧ ¬ri

)
→ cr

)
. We assume that a traffic light at an intersection

is either red, green, or flashing orange, and cannot have different colors at the same
time. This assumption is captured by the following abbreviation: α1

def
= (re ∧ ¬gr ∧

¬or)∨(¬re∧gr ∧¬or)∨(¬re∧¬gr ∧or). Additionally, we assume that it is possible
for the robot to cross when no vehicle is approaching from the right and the traffic light
is not orange and not red. This assumption is captured by the following abbreviation:
α2

def
= ♢(cr ∧ ¬re ∧ ¬or ∧ ¬ri).
In the following, we show what the robot is permitted to do in a given situation.

Specifically, we consider, without loss of generality, the permissions of the robot when
they are standing in front of a traffic light.

When the robot is at a red traffic light, it checks whether it has permission to cross.
It is routine to verify that:

{α1, α2} ̸|=M (all1 ∧ all2) → (re 3 cr). (9)

Thus, the robot does not have the permission to cross when the traffic light is red.
When the traffic light turns green, the robot has permission to cross. Indeed, thanks

to the validity (8) in Theorem 2 and Theorem 1, we have:

{α1, α2} |=M (all1 ∧ all2) → (gr 3 cr). (10)

When the traffic light is flashing orange, the robot has no permission to cross. Indeed,
we have:

{α1, α2} ̸|=M (all1 ∧ all2) → (or 3 cr). (11)
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However, the robot has permission to cross when the traffic light is not red and no
vehicle is coming from the right:

{α1, α2} |=M (all1 ∧ all2) →
(
(¬re ∧ ¬ri) 3 cr

)
. (12)

Note that the properties (9), (10), (11), and (12) are expressed in terms of logi-
cal consequence. By Theorem 1, these can be reduced to validity checking problems.
In Section 5, we introduce a QBF-based validity checking procedure that enables the
automatic verification of such properties.

4 Defeasible Deontic Operators

Using our semantics, we formalize defeasible obligations, prohibitions, and tacit per-
missions. We then examine their behavior, along with that of the implicit permission
operator, in relation to key deontic paradoxes, understood here as (un)derivable theo-
rems that challenge intuition.

4.1 Obligations and Prohibitions

A defeasible prohibition refers to actions that are not permitted, while their negations
are. In contrast, a defeasible obligation concerns actions that are permitted, while their
negations are not. Formally, these are defined as:

Definition 10. Let Σ be a set of formulas:

– φ is defeasibly prohibited when ψ with respect to Σ iff Σ ̸|=M ψ 3 φ and Σ |=M

ψ 3 ¬φ. We denote this as Σ |∼ F ∗(φ/ψ).
– φ is defeasibly obligatory when ψ with respect to Σ iff Σ |∼ F ∗(¬φ/ψ). We write

this as Σ |∼ O∗(φ/ψ).

We call these operators defeasible3 because extending the set of assumptions might
invalidate previously derived norms. The non-monotonicity of the consequence relation
|∼ is illustrated by the following example.

Example 3. Take B = {p} and Γ = {♢p}. Hence △B ∪ Γ |∼ O∗(p/⊤). However,
when B′ = B ∪ {¬p} and Γ ′ = Γ ∪ {♢¬p}, we get that △B′ ∪ Γ ′ |=M ⊤ 3 p and
△B′ ∪ Γ ′ |=M ⊤ 3 ¬p, and thus △B′ ∪ Γ ′ ̸ |∼ O∗(p/⊤).

Note that omitting the condition Σ |=M ψ 3 ¬φ from the definition of defeasible
prohibition would result in undesirable behavior. For instance, when B = {α}, and set
of assumptions Γ = {♢α,♢β} we would obtain that β and ¬β are prohibited.

Definition 11. φ is tacitly permitted when ψ with respect to Σ iff Σ ̸ |∼ F ∗(φ/ψ).

However, since this does not clarify whether the action is implicitly permitted, an
agent should not act based solely on this presumed permission.

3 The term is used in legal reasoning (e.g. [32]) and in Deontic Logic (e.g. [12,34]), with a
different meaning, accounting for norms involving possible (prima facie) conflicts and excep-
tions. Also, there is no obvious connection between our logic and Defeasible Deontic Logic
(DDL) [1], as they originate from fundamentally different traditions; ours is preference-based,
extending Åqvist’s system F+(CM), while DDL is rule-based.
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4.2 Paradoxes

We evaluate our framework on paradoxes that challenged Åqvist systems.
Free-Choice Paradox. It results from the undesired formulas arising when accept-

ing as premise the (formalization of the) sentence [18]: “It is permitted to have tea or
coffee implies permitted to have tea and permitted to have coffee”. In a dyadic deontic
setting, it is formalized as ⊤3(tea∨coffee) → (⊤3tea)∧(⊤3coffee). In Åqvist’s
systems, assuming this formula, one can derive the following: I) θ 3 φ → θ 3 ψ, II)
θ 3 φ→ θ 3 (φ ∧ ψ), and III) ¬(θ 3 ¬φ) → ¬(θ 3 ¬(φ ∧ ψ)), for any φ,ψ, θ.

We formalize the free-choice inference in two ways, with α1, α2, α3 in L0:

1. △(α3 → (α1 ∨ α2)) → △(α3 → α1) ∧△(α3 → α2)
2. △(α3 → (α1 ∨ α2)) → α3 3 α1 ∧ α3 3 α2

Ex. 4 shows that the undesired results I)–III) do not follow from assuming 1 and 2.

Example 4. Let B = {r → (p ∨ q), r → p, r → q, h}, where p, q, r, h are atomic
formulas. The following model satisfies 1–2 but not I)–III):

S1S2 S3

r
p, r, h p,q, r

It is easy to see that both formulations 1 and 2 of the free-choice inference are true in
the model, while none if the undesired formulas I)-III) is. For I), we see that (Si, U) |=
r 3 p, but (Si, U) ̸|= ¬(r 3 (q ∧ ¬p)), and for II) we have (Si, U) |= r 3 q, but
(Si, U) ̸|= ¬(r 3 (q ∧ h)), for i ∈ {1, 2, 3}. For III), we see that (Si, U) |= ¬(r 3 ¬p)
but (Si, U) ̸⊨ ¬(r 3 ¬(p ∧ q)), for i ∈ {1, 2, 3}.

A different way of avoiding the formula III) involves the use of the defeasible obli-
gation; we indeed show that if there is a set of formulas Σ such that Σ |∼ O∗(p/r),
this does not imply Σ |∼ O∗((p ∧ q)/r). Consider the set of assumptions △B ∪ Γ ,
where Γ = {♢(p ∧ r),♢(q ∧ r)}. Then, we have that △B ∪ Γ |=M r 3 p, and our
model shows that △B ∪ Γ ̸|=M r 3 p, and thus △B ∪ Γ |∼ O∗(p/r); and since
△B ∪ Γ ̸|=M r 3 (p ∧ q), we have △B ∪ Γ ̸ |∼ O∗((p ∧ q)/r).

Ross’ paradox. In SDL [38] or Åqvist systems, from the sentence: 1. “You are
permitted to mail the letter”, follows the unintuitive sentence 2. “You are permitted to
mail the letter or burn it” [37]. While this is still the case for the implicit permission in
our framework – since (S,U) ⊨ θ 3 φ implies that (S,U) ⊨ θ 3 (φ ∨ ψ) – this is not
for explicit permissions. Namely, (S,U) ⊨ △α does not imply (S,U) ̸⊨ △(α∨β), nor
does it imply (S,U) ⊨ ⊤ 3 (α ∨ β). To see why, take a model with permission base
B = {p}, and one state S1 = (B, V ) with V = ∅. In that case, we have (S1, U) |= △p,
but (S1, U) ̸|= ⊤ 3 p and (S1, U) ̸|= ⊤ 3 p ∨ q, and (S1, U) ̸|= △(p ∨ q).

Asparagus Paradox. It consists of: 1. You should not eat with your fingers; 2. When
eating asparagus, you should eat with your fingers; 3. If you eat with your fingers, you
should wash them. As pointed out in [17], the formalization of 1. and 2. in Kratzer’s
semantics [21] (and in Åqvist systems [2]) leads to the counterintuitive prohibition to
eat asparagus, ¬(⊤ 3 a), while in other frameworks (e.g. [7]) the original prohibition
of not eating with fingers is somehow canceled (this is called the drowning problem
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in [4]). We use the defeasible deontic operators of Def. 10 to avoid both undesired
consequences. We assume the permission base: B = {¬f , a → f} and the set of
formulas Γ = {♢¬f,♢(f ∧ a)}. The figure below shows that △B ∪ Γ ̸|=M a 3 ¬f
and △B ∪ Γ ̸|=M ⊤ 3 f .

S1 S2a, f

From Theorem 2.7 follows △B ∪ Γ |=M ⊤ 3 ¬f and we conclude △B ∪ Γ |∼
F ∗(f/⊤). Then from Theorem 2.8, it follows that △B ∪Γ |=M a3 f and thus △B ∪
Γ |∼ O∗(f/a). Then, △B ∪ Γ |=M ⊤3 a, and thus we have △B ∪ Γ ̸ |∼ F ∗(a/⊤).
Therefore, we do not obtain the counterintuitive prohibition to eat asparagus.

Statements 1. and 3. are contrary-to-duties CTD (the most famous paradox involv-
ing CTDs being the Gentle Murder [8] paradox). In contrast with Standard Deontic
Logic SDL [38], preference-based logics can correctly handle CTDs. The same ap-
plies to our defeasible operators, which enable to derive both Σ |∼ O∗(w/f) and
Σ |∼ F ∗(¬f/⊤), from a set of assumptions Σ.

To show this, let us defineB′ = B∪{f → w} and Γ ′ = Γ∪{♢(f∧w)}. Theorem 2.
8 yields that △B ∪ Γ |=M f 3 w, and Theorem 2.7 that △B ∪ Γ |=M ⊤ 3 ¬f . The
following figure shows that △B ∪ Γ ̸|=M f 3 ¬w and △B ∪ Γ ̸|=M ⊤ 3 f :

S1 S2f, w, a

In the model, we see that when violating the prohibition to eat with your fingers, we
do not get an undesired result; we are simply in the suboptimal state S1. Thus, we can
consistently model the sentences 1. and 3. using the defeasible operators.

5 Complexity and Automated Deduction

We show that validity checking w.r.t. Mabs is PSPACE-complete. We achieve this via
polynomial-time reductions to the Quantified Boolean Formula (QBF) problem and
back, enabling efficient automated deduction using QBF solvers. Note that validity
checking in PCLTA is co-NP-complete. This is a consequence of the small model prop-
erty: every formula in PCLTA is satisfiable by some preference model of polynomial
size. Such model construction for PCLTA is established in [9] by extending a preorder
in a given (finite) model to an arbitrary total order and then selecting a subchain of
polynomial size in it. Such transformation is not possible for models with grounded
ordering, since △-subformulas may constrain certain worlds to be incomparable in any
satisfying model. We can use this observation to show that satisfiability w.r.t. Mabs

does not adhere to the small model property.

Lemma 3. There is a formula φ ∈ L satisfiable in Mabs only by models with at least
2Θ(|φ|) states.

Proof. Consider set Φn of formulas from L:

{d0, a0, b0} ∪ {△(di ∧ li),△(di ∧ ri),□(li ∧ ri → ⊥)}i∈{1,...,n} ∪
{¬(ak 3 ¬(dk+1 ∧ ak+1 ∧ bk+1 ∧ lk+1))}k∈{0,...,n−1} ∪
{¬(bk 3 ¬(dk+1 ∧ ak+1 ∧ bk+1 ∧ rk+1))}k∈{0,...,n−1}
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Let φ be a conjunction of these formulas. Then |φ| = Θ(n). φ is satisfiable by a model
corresponding to a full binary tree of depth (in edges) n, with valuation assigned to
each node as follows: dk is true for nodes at depth at least k, ak (resp. bk) is true for
nodes at depth exactly k or left (resp. right) immediate children of such nodes; li (resp.
ri) is true for nodes at depth at least i such that the i-th edge in the path to this node
goes to the left (resp. right). Take the permission base B = {dk ∧ lk}k∈{1,...,n−1} ∪
{dk ∧ rk}k∈{1,...,n−1} to satisfy exactly the △-subformulas in φ and take all valuations
assigned to nodes as described above, the ideality ordering will reflect the structure
of the described binary tree: if Vx, Vy, Vz are valuations assigned to nodes x, y, z then
(B, Vx) ⪯(B,Vz) (B, Vy) iff x is a predecessor of y (or y itself). It is easy to check that
all formulas in Φn are satisfied in such a model.

Now we show that any model M satisfying φ will always, in a sense, contain such
a tree inside. Precisely, for every valuation Vx described above, there should exist a
state (B′, V ′

x) in M such that Vx ⊆ V ′
x. This can be proved by induction on the depth

of the tree, with the root mapped to the state where φ is satisfied and left (resp. right)
child of any node x at depth k mapped to an arbitrary ak-best (resp. bk-best) world
preferred to the state corresponding to x. Therefore for every leaf in the tree the subset
of {li}i∈{1,...,n} ∪ {ri}i∈{1,...,n} encoding a path to it belongs to the valuation of some
state in M . But due to satisfaction of {□(li∧ ri → ⊥)}i∈{1,...,n} all these states should
be different, therefore M contains at least Θ(2n) states.

Thus, extending the language with △-modality enables expressing more complex
model conditions, increasing the complexity of satisfiability (and hence validity) check-
ing. Nonetheless, we can use the reasoning from [9] to transform an arbitrary satisfying
model into a somewhat bounded model. In particular, we can bound polynomially the
depth of the model, i.e. the length of the longest strictly ascending chain of worlds.

Lemma 4. If φ ∈ L is satisfiable by some (S,U) ∈ Mabs , then it is satisfiable by
some (S′, U ′) ∈ Mabs such that the length m of any ascending chain of states S′

1 ≺S′

· · · ≺S′ S′
m in U ′ is at most (n+ 1), where n is the number of conidionals in φ.

Proof. Let {ξ1 3 τ1, . . . , ξn 3 τn} be all conditionals in φ. Consider the context U ′ =
S ∪ Best(ξ1, S, U) ∪ · · · ∪ Best(ξn, S, U). (S,U ′) |= φ since the evaluation of any
conditional inside φ did not change. In any ascending chain inU ′, every state apart from
one (S) belongs to Best(ξi, S, U) for some i, and all states later in the chain cannot
belong to it (due to the definition of Best), so any chain contains at most (n+1) states.

The depth of a model can be used as a recursive parameter in the QBF-encoding of
satisfiability of a formula in a model, resulting in a polynomial reduction to QBF. Con-
versely, we can encode any QBF formula as a set of formulas in L, for which every satis-
fying model will correspond to a winning strategy in QBF-game on the given formula.
Conversely, the tree-model in Lemma 3 already corresponds to a tree of all possible
choices of values for variables {li}i∈{1,...,n}, capturing universal boolean quantifica-
tion over these variables. We can slightly modify the construction to also incorporate
existential quantifiers, thus providing a polynomial reduction from QBF. These back-
and-forth reductions imply PSPACE-completeness of validity checking w.r.t. Mabs .
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Theorem 4. Validity checking w.r.t. Mabs is PSPACE-complete.

Proof. We show that satisfiability checking w.r.t. Mabs is polynomially reducible to
QBF, and vice versa. As usual, satisfiability checking is reducible to validity checking
by negating the formula and inverting the output.

PSPACE-Membership. We construct a polynomial QBF formula4 encoding SAT
of a formula φ w.r.t. Mabs by induction on the depth of the model, relying on Lem. 4.

Let {pi}1≤i≤r, {△αi}1≤i≤m, and {ξi 3 τi}1≤i≤n be the atoms, △-formulas and
conditionals in φ. First, note that satisfaction of any subformula of φ in a state is de-
termined by satisfaction of formulas from these three sets, so we can define a predicate
Satψ(A,B, C) encoding the satisfaction of a subformula ψ of φ in a given state based
on subsets of indices of satisfied atoms (A), △-subformulas (B), and conditionals (C).

Satpi(A,B, C) = i ∈ A Sat¬ψ(A,B, C) = ¬Satψ(A,B, C)

Satψ1∧ψ2(A,B, C) = Satψ1(A,B, C) ∧ Satψ2(A,B, C)

Sat△αi(A,B, C) = i ∈ B Satξi3τi(A,B, C) = i ∈ C

We define the predicate Stateψd (A,B, C) encoding that a given valuation (represented
by A ⊆ {1, . . . , r}) can appear in some state at depth at most d (where the depth of
a state is the number of states in the longest ascending chain starting in this state)
in a model, still assuming that the subsets B and C of the indices of the satisfied
△-subformulas and conditionals in φ are given. Specifically, we check that no (ξi3 τi)
for i ̸∈ C is validated in this state. Additionally, we require a given subformula ψ to
be false in all strictly preferable states (to be able to ensure bestness). The predicate is
defined by induction on d, with the base case Stateψ0 (A,B, C) = ⊥.

Stateψd+1(A,B, C) = ∀i ∈ {1, . . . , n} \ C. ¬Satτi(A,B, C) ∨ ¬Satξi(A,B, C) ∨
∃Ai ⊆ {1, . . . , r}. Stateψd (Ai,B, C) ∧ Satξi(Ai,B, C) ∧ ¬Satψ(Ai,B, C) ∧

(
∧

1≤j≤m
(j ∈ B ∧ Satαj (A,B, C)) → Satαj (Ai,B, C))

We can now encode the satisfability of φ w.r.t. Mabs by first guessing which △-
subformulas and conditionals in φ are true in a satisfying model, and then checking
existence of states at depth at most (n + 1) satisfying φ and validating every condi-
tional (ξi 3 τi) guessed to be true (i.e. satisfying τi while being one of best states for
ξi). We encode this with the following closed QBF formula:

∃B ⊆ {1, . . . ,m}.∃C ⊆ {1, . . . , n}.
(∃A ⊆ {1, . . . , r}. State⊥n+1(A,B, C) ∧ Satφ(A,B, C)) ∧
(

∧
1≤i≤n

(i ∈ C → ∃Ai ⊆ {1, . . . , r}.Stateξin+1(Ai,B, C) ∧

Satξi(Ai,B, C) ∧ Satτi(Ai,B, C)))

4 For simplicity, we use quantification over subsets of predefined finite sets of natural numbers.
Every subset of S can be represented as a boolean vector of length |S| (indicator function),
making translation to standard Boolean quantification straightforward.
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Notice that |Stateψd (A,B, C)| = O(d · |φ|), so this QBF formula has a polynomial size
w.r.t. |φ|. If φ is satisfiable in some M ∈ Mabs , this QBF formula is true: there exist
correct guesses of subsets B and C and required states at depth at most (n+ 1) (due to
Lem. 4). Conversely, if this QBF formula is true, we can constructM ∈ Mabs satisfying
φ. Namely, each true predicate Stateψd+1(A,B, C) (for some specific values of A, B,
and C) yields a tree of valuations of depth at most (d+ 1) by taking valuation {pi}i∈A
in the root and attaching to it trees corresponding to each true Stateψd (Ai,B, C) in the
definition of this predicate. Satisfaction of the closed QBF formula above provides us
with some guessed B and C and (|C| + 1) such trees. Notice that with the permission
base {αj}j∈B, (B, V ) ⪯(B,V ′′) (B, V ′) if V ′ is a successor of V in one of the trees.
To ensure that all conditionals outside C are false in all states we need to make these
preference relations inside trees strict, which we can achieve with the same trick as in
the proof of Th. 3: add fresh atom χ(S) for every node S, extend permission base with
these atoms and extend all valuations in every state with its fresh atom and fresh atoms
for all its predecessors in all trees. This ensures that (ξi 3 τi) is true in the resulting
model iff i ∈ C, and consequently that φ is satisfied in the state corresponding to the
root of the first tree. Thus, this QBF encoding indeed constitutes a polynomial reduction
of satisfiability w.r.t. Mabs to QBF.

PSPACE-Hardness. Consider the following QBF-formula F ∗ in the alternating
prefix normal form: ∀x1∃y1∀x2∃y2 . . . ∀xn∃yn.F (x1, y1, . . . , xn, yn). We extend the
set Φn from the proof of Lem. 3 with the following formulas:

{△(di ∧ yi),△(di ∧ ¬yi)}i∈{1,...,n} ∪{□(li ↔ xi), □(ri ↔ ¬xi)}i∈{1,...,n} ∪
{¬(dn 3 ¬F (x1, y1, . . . , xn, yn))}

As a result of this extension, the value of yk in each node t at depth k will be preserved
in all predecessors of t, while the value of xk in the leaves will correspond to the di-
rection of k-th edge in its path. Hence, such a tree will represent one strategy in the
QBF-game on the formula F ∗: for each choice of values of {xi}i∈{1,...,k} some value
of yk is chosen and carried to the leaf. It will be a winning strategy iff a valuation in
every leaf satisfies F (x1, y1, . . . , xn, yn), i.e. iff the last (dual) conditional is satisfied
in such a tree-model. So we can build a satisfying model on the basis of any winning
strategy. Conversely, any model satisfying the conjunction of the extended set of for-
mulas contains a tree corresponding to a winning strategy. Thus, we have a polynomial
reduction from QBF to satisfiability checking w.r.t. Mabs .

6 Conclusions and Perspectives

We have presented a novel logical framework for reasoning about explicit and implicit
permissions. It conservatively extends the deontic system F + (CM) (i.e., the condi-
tional logic PCLTA). Its behavior is illustrated through a case study and analysis of
deontic paradoxes. Additionally, we showed that validity checking in our framework is
PSPACE-complete, unlike in PCLTA. Directions for future research include:

Beyond Åqvist. Our analysis was restricted to normatively absolute models in the
class Mabs . This corresponds to the notion of Absoluteness in conditional logic and in
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Åqvist’s systems. The model class M is also worth investigating, as it allows permission
bases to vary across states, enabling more complex examples and the representation of
higher-order norms, which are central to legal theory [36]. Consider indeed the robots
example in Sec. 3. From a policy-maker’s perspective, we may wish to engage in meta-
reasoning about second-order explicit allowances, i.e., permissions over which first-
order allowances are themselves permitted. For example, a second-order allowance of
the form: “it is allowed to allow Robot 1 to cross an intersection when the traffic light
is flashing orange and Robot 2 is not approaching the intersection from the right” (or,
from the left, if the robots are designed in the UK).

Given Friedman and Halpern’s EXPTIME-completeness result for PCLTU, it fol-
lows that validity checking for the language L relative to the class M is EXPTIME-hard.
Future work will focus on establishing a tight complexity bound for this problem.

Non-monotonic reasoning. Despite the global monotonicity of the underlying en-
tailment relation, our logic exhibits non-monotonic behavior locally and globally. Lo-
cally, our system inherits the non-monotonicity from preference-based deontic logics
(and, in particular, of Åqvist’s System F + (CM)) via the failure of strengthening of
the antecedent. This feature is well-known to introduce a form of non-monotonicity in
otherwise monotonic systems. More significantly, the defeasible obligations and pro-
hibitions introduced in Section 4 exhibit global non-monotonicity, as the addition of
premises can retract previously held conclusions. Future work will be devoted to study-
ing in-depth the axiomatic properties of our non-monotonic entailment relation, also
addressing typicality reasoning (thus tackling the problem identified in [16]), along the
lines of [3].

Epistemic extension. We also plan to extend the semantics and language introduced
in Sec. 2 with an epistemic component, in order to reason about agents’ beliefs and
knowledge concerning explicit and implicit permissions. In particular, we are inter-
ested in modeling scenarios in which agents have incomplete information about the
environment and the permission base, and it is important to represent norms with epis-
temic content, such as the permission to let an agent believe or know something. For
example, in the robots’ scenario, we may want to represent a robot’s uncertainty about
the color of the traffic light due to misperception or lack of visibility, as well as the
epistemic permission to let a robot know the color of the other robot’s traffic light.

Dynamic extension. Last but not least, we intend to add a new family of dynamic
modalities, following the style of belief base change modalities in [27,31], to model
changes in permissions. In particular, we plan to consider three types of operation on
permission bases: permission expansion, retraction, and revision.
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